DOI QR코드

DOI QR Code

Synthesis and Properties of Magnetite for Ferrofluid

자성유체용 마그네타이트의 합성 및 특성

  • Baek, In-Ho (Department of Engineering Chemistry, College of Engineering Chungbuk National University) ;
  • Jeong, Noh-Hee (Department of Engineering Chemistry, College of Engineering Chungbuk National University)
  • 백인호 (충북대학교 공과대학 공업화학과) ;
  • 정노희 (충북대학교 공과대학 공업화학과)
  • Received : 2012.02.01
  • Accepted : 2012.03.12
  • Published : 2012.03.30

Abstract

Magnetite in the use of magnetic fluid seal was synthesized by coprecipitation method. Mean particle size of magnetite was measured about 12 nm by using dynamic light scattering(DLS). As a result of XRD test, along with the $NH_4OH$ concentration was increased, the crystallinity of magnetite was increased. The zeta potential of dispersed ferrofluid in water was measured in the range from -49.3 mV to -26.2 mV by DLS. The shape of magnetite particle was sphere form, and the spiking effect of aqueous and oily ferrofulid was confirmed.

자성유체 유체씰에 사용할 수 있는 마그네타이트를 공침법에 의하여 합성하였다. 마그네타이트의 평균입자크기는 동적광산란 측정장치(DLS)에 의해 약 10-12 nm 로 측정되었다. XRD 측정결과, $NH_4OH$ 의 농도가 증가함에 따라 마그네타이트의 결정화도가 증가하였다. 수중 분산된 자성유체의 제타전위는 -49.3 mV 에서 -26.2 mV 까지 DLS에 의하여 측정되었다. 입자의 형상은 구형이었고, 수상과 유상 자성유체에서 스파이킹 효과를 확인하였다.

Keywords

References

  1. R. E. Rosensweig, Progeress in Ferrohydrodynamics, Ind. Res., 12(10), 36 (1970).
  2. S. T. Papell, Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles, U. S. Patent, 3215572 (1965).
  3. T. O. Kim and S. M. Kim, Preparation and Characteristics of Magnetite Ferrofluid, J. Kor. Ceramic Soc., 27(1), 13 (1990).
  4. C. J. Sambucetti, Magnetic Ink for Jet Printing, IEEE Transactions on Magnetics, MAG-16(2), 364 (1980).
  5. B. D. Cullity, Elements of X-ray Diffraction, Addison Wesley Publishing Company, 99 (1978).
  6. P. Berger, N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, G., and C. Licensky, Preparation and Properties of an Aqueous Ferrofluid, J. Chem. Educa, 76(7), 943 (1999).
  7. S. W. Charles and J. Popplewell, Progress in the Development of Ferromagnetic Liquids, IEEE Transactions on Magnetics, MAG-16 , 172 (1980).
  8. O. H. Kim, H. B. Lee, M. K. Lee, J. H. Hong and Y. W. Kwak, Analysis of Heat Transfer of a Magnetic Fluid Seal, J. Kor. Soc. Mach. Tool. Eng., 19(3), 365 (2010).
  9. I. Borbath, and Z. Kasco, Application of Magnetic Nanofluids in Rotation Seals, Convergence of Micro-and nanoengineering, 200(2006).
  10. A. Hiroshi, Magnetic Fluid Seal, U. S. Patent, 6672592 B1, (2004).
  11. G. W. Reimers and S. E. Khalafalla, Preparation of Dilution-Stable Aqueous Magnetic Fluid, IEEE Transaction on Magnetic, MAG-6(2), 178 (1980).
  12. M. Kiyama, Condition for the Formation of $Fe_3O_4$ by the Air Oxidation of $Fe(OH)_2$ Suspensions, Bull. Chem, Sco. Jap., 47(7), 1646 (1974).
  13. H. S. Kim and N. H. Jeong, Preparation of Nano AgBr Particles by Microemulsions, J. Kor. Oil Chem. Soc., 21(1), 17 (2004).
  14. P. H. Refait and J. R. Genin, The oxidation of ferrous hydroxide in chloride containing aqueous media and pourbaix diagrams of green rust one, Corrosion Sci., 34(1), 797 (1993).
  15. A. A. Olowe and J. M. R. Génin, The Influence of Concentration on the Oxidation of Ferrous Hydroxide in Acidic Sulphated Aqueous Medium: Particle Size Analysis of lepidocrocite, Corrosion Sci., 32(1), 1021 (1991).
  16. N. H. Jeong and K. D. Nam, Synthesis of Nanoparticles by Microemulsion, J. Ind. Sci. Tech. Inst., 17(1), 87 (2003).
  17. H. S. Lee, Synthesis of Magnetite Nanoparticles by Microemulsion Method, J. Kor Inst. Res. Recyc, 9(5), 33 (2000).