참고문헌
- Alshoaibi, A.M. (2010), "Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading", Struct. Eng. Mech., 35(3), 283-299. https://doi.org/10.12989/sem.2010.35.3.283
- Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7(1), 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
- Bazant, Z.P. (2002), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69, 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4
- Bazant, Z.P., Gettu, R. and Kazemi, M.T. (1991), "Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curve", Int. J. Rock Mech. Min., 28(1), 43-51. https://doi.org/10.1016/0148-9062(91)93232-U
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177.
- Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Determination of fracture properties from size effect tests", J. Struct. Eng. - ASCE, 112(2), 289-307. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(289)
- Bazant, Z.P. and Planas, J. (1998), Fracture and size effect in concrete and other quasibrittle materials, Florida CRC Press.
- Carpinteri, A. (1989), "Cusp catastrophe interpretation of fracture instability", J. Mech. Phys. Solids, 37(5), 567- 582. https://doi.org/10.1016/0022-5096(89)90029-X
- Cusatis, G. and Schauffert, E.A. (2009), "Cohesive crack analysis of size effect", Eng. Fract. Mech., 76, 2163- 2173. https://doi.org/10.1016/j.engfracmech.2009.06.008
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
- Elices, M. and Planas, J. (1996), "Fracture mechanics parameters of concrete an overview", Adv. Cem. Based Mater., 4, 116-127.
-
Elices, M., Guinea, G.V. and Planas, J. (1992), "Measurement of the fracture energy using three-point bend tests: Part 3- Influence of cutting the P-
$\delta$ tail", Mater. Struct., 25, 327-334. https://doi.org/10.1007/BF02472591 - Elices, M., Guinea, G.V. and Planas, J. (1997), "On the measurement of concrete fracture energy using threepoint bend tests", Mater. Struct., 30, 375-376. https://doi.org/10.1007/BF02480689
- Elices, M., Rocco, C. and Rosello, C. (2009), "Cohesive crack modeling of a simple concrete: experimental and numerical results", Eng. Fract. Mech., 76, 1398-1410. https://doi.org/10.1016/j.engfracmech.2008.04.010
- Gasser, T.C. (2007), "Validation of 3D crack propagation in plain concrete. Part II: Computational modeling and predictions of the PCT3D test", Comput. Concrete, 4(1), 67-82. https://doi.org/10.12989/cac.2007.4.1.067
- Guinea, G.V., Planas, J. and Elices, M. (1992), "Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures", Mater. Struct., 25,, 212-218. https://doi.org/10.1007/BF02473065
- Hanson, J.H. and Ingraffea, A.R. (2003), "Using numerical simulations to compare the fracture toughness values for concrete from the size-effect, two-parameter and fictitious crack models", Eng. Fract. Mech., 70, 1015- 1027. https://doi.org/10.1016/S0013-7944(02)00163-7
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. - ASCE, 111(10),
- Karihaloo, B.L. and Nallathambi, P. (1989), "An improved effective crack model for the determination of fracture toughness of concrete", Cement Concrete Res., 19, 603-610. https://doi.org/10.1016/0008-8846(89)90012-4
- Karihaloo, B.L. and Nallathambi, P. (1990), "Size-effect prediction from effective crack model for plain concrete", Mater. Struct., 23(3), 178-185. https://doi.org/10.1007/BF02473016
- Karihaloo, B.L. and Nallathambi, P. (1991), "Notched beam test: mode I fracture toughness", Fracture Mechanics Test methods for concrete, Report of RILEM Technical Committee 89-FMT (Edited by S.P. Shah and A. Carpinteri), Chamman & Hall, London, 1-86.
- Kim, J.K., Lee, Y. and Yi, S.T. (2004), "Fracture characteristics of concrete at early ages", Cement Concrete Res., 34, 507-519. https://doi.org/10.1016/j.cemconres.2003.09.011
- Kumar, S. and Barai, S.V. (2008), "Influence of specimen geometry and size-effect on the KR-curve based on the cohesive stress in concrete", Int. J. Fracture, 152, 127-148. https://doi.org/10.1007/s10704-008-9275-6
- Kumar, S. and Barai, S.V. (2009a), "Equivalence between stress intensity factor and energy approach based fracture parameters of concrete", Eng. Fract. Mech., 76, 1357-1372. https://doi.org/10.1016/j.engfracmech.2009.02.014
- Kumar, S. and Barai, S.V. (2009b), "Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen", Sadhana-Acad. P. Eng. S., 36(6), 987-1015.
- Kumar, S. and Barai, S.V. (2010), "Size-effect prediction from the double-K fracture model for notched concrete beam", Int. J. Damage Mech., 9, 473-497.
- Kwon, S.H., Zhao, Z. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38, 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014
- MATLAB, Version 7, The MathWorks, Inc., Copyright 1984-2004.
- Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concrete Res., 38(135), 67-76. https://doi.org/10.1680/macr.1986.38.135.67
- Ouyang, C., Tang, T. and Shah, S.P. (1996), "Relationship between fracture parameters from two parameter fracture model and from size effect model", Mater. Struct., 29(2), 79-86. https://doi.org/10.1007/BF02486197
- Park, K., Paulino, G.H. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 7, 3806-3818.
- Petersson, P.E. (1981), "Crack growth and development of fracture zone in plain concrete and similar materials", Report No. TVBM-100, Lund Institute of Technology.
- Philip, P. (2009), "A quasistatic crack propagation model allowing for cohesive forces and crack reversibility", Interact. Multiscale Mech., 2(1), 31-44. https://doi.org/10.12989/imm.2009.2.1.031
- Planas, J. and Elices, M. (1990), "Fracture criteria for concrete: mathematical validations and experimental validation", Eng. Fract. Mech., 35, 87-94. https://doi.org/10.1016/0013-7944(90)90186-K
- Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive material", Int. J. Fracture, 51, 139-157.
- Planas, J. and Elices, M. (1992), "Shrinkage eignstresses and structural size-effects", In Fracture Mechanics of Concrete Structures, Z.P. Bazant, ed., Elsevier Applied Science, London, 939-950.
- Planas, J., Elices, M. and Guinea, G.V. (1992), "Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation", Mater. Struct., 25, 305-312. https://doi.org/10.1007/BF02472671
- RILEM Draft Recommendation (TC50-FMC) (1985), "Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18(4), 287-290. https://doi.org/10.1007/BF02472918
- RILEM Draft Recommendations (TC89-FMT) (1990a), "Determination of fracture parameters ( and CTODc) of plain concrete using three-point bend tests", Mater. Struct., 23(138), 457-460. https://doi.org/10.1007/BF02472029
- RILEM Draft Recommendations (TC89-FMT) (1990b), "Size-effect method for determining fracture energy and process zone size of concrete", Mater. Struct., 23(138), 461-465. https://doi.org/10.1007/BF02472030
- Roesler, J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29, 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
- Tada, H., Paris, P.C. and Irwin, G. (1985), The stress analysis of cracks handbook, Paris Productions Incorporated, St. Louis, Missouri, USA.
- Tang, T., Shah, S.P. and Ouyang, C. (1992), "Fracture mechanics and size effect of concrete in tension", J. Struct. Eng. - ASCE, 118(11), 3169-3185. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3169)
- Xu, S. and Reinhardt, H.W. (1998), "Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture", Int. J. Fracture, 92, 71-99. https://doi.org/10.1023/A:1007553012684
- Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fracture, 98,111-149. https://doi.org/10.1023/A:1018668929989
- Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fracture, 98, 151-77. https://doi.org/10.1023/A:1018740728458
- Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: compact tension specimens and wedge splitting specimens", Int. J. Fracture, 98, 179-193. https://doi.org/10.1023/A:1018788611620
- Xu, S. and Zhang, X. (2008), "Determination of fracture parameters for crack propagation in concrete using an energy approach", Eng. Frac. Mech., 75, 4292-4308. https://doi.org/10.1016/j.engfracmech.2008.04.022
- Xu, S., Reinhardt, H.W., Wu, Z. and Zhao, Y. (2003), "Comparison between the double-K fracture model and the two parameter fracture model", Otto-Graf J., 14, 131-158.
- Zhao, Z., Kwon, S.H. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy", Cement Concrete Res., 38, 1049-1060. https://doi.org/10.1016/j.cemconres.2008.03.017
피인용 문헌
- Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete vol.15, pp.2, 2015, https://doi.org/10.12989/cac.2015.15.2.199
- Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure vol.10, pp.2, 2016, https://doi.org/10.1007/s40069-016-0139-6
- Numerical simulation and modeling of ice shedding: Process initiation vol.142, 2014, https://doi.org/10.1016/j.compstruc.2014.06.001
- Analytical methods for determination of double-K fracture parameters of concrete vol.1, pp.4, 2013, https://doi.org/10.12989/acc2013.1.4.319
- Stress-Strain Behavior of Cementitious Materials with Different Sizes vol.2014, 2014, https://doi.org/10.1155/2014/919154
- Effect of size and cohesive assumptions on the double- K fracture parameters of concrete vol.166, 2016, https://doi.org/10.1016/j.engfracmech.2016.09.001
- Crack propagation and deviation in bi-materials under thermo-mechanical loading vol.50, pp.4, 2014, https://doi.org/10.12989/sem.2014.50.4.441
- Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete vol.2, pp.3, 2014, https://doi.org/10.12989/acc.2014.2.3.229
- Determination of double- K fracture parameters of concrete using peak load method vol.131, 2014, https://doi.org/10.1016/j.engfracmech.2014.09.004
- A New Procedure for Mode I Fracture Characterization of Cement-Based Materials vol.51, pp.6, 2015, https://doi.org/10.1111/str.12165
- Impact of particle packing mix design method on fracture properties of natural and recycled aggregate concrete pp.8756758X, 2018, https://doi.org/10.1111/ffe.12963
- Simplified equations for determining double-K fracture parameters of concrete for 3-point bending test vol.41, pp.7, 2018, https://doi.org/10.1111/ffe.12800
- Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2012, https://doi.org/10.12989/cac.2017.19.1.099
- Influence of nano-silica on the failure mechanism of concrete specimens vol.19, pp.4, 2012, https://doi.org/10.12989/cac.2017.19.4.429
- A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
- Size effect on strength of Fiber-Reinforced Self-Compacting Concrete (SCC) after exposure to high temperatures vol.21, pp.6, 2012, https://doi.org/10.12989/cac.2018.21.6.681
- Size effect study on compressive strength of SCLC vol.23, pp.6, 2012, https://doi.org/10.12989/cac.2019.23.6.409
- Real-time comprehensive image processing system for detecting concrete bridges crack vol.23, pp.6, 2012, https://doi.org/10.12989/cac.2019.23.6.445
- Research on the Size Effect of Unstable Fracture Toughness by the Modified Maximum Tangential Stress (MMTS) Criterion vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/3986367
- Impact of Particle Packing Method of Design Mix on Fracture Behavior of Concrete: Critical Analysis vol.32, pp.4, 2012, https://doi.org/10.1061/(asce)mt.1943-5533.0003138
- Crack mechanisms in concrete - from micro to macro scale vol.19, pp.4, 2020, https://doi.org/10.35784/bud-arch.2147
- Prediction of fracture parameters of concrete using an artificial neural network approach vol.258, pp.None, 2012, https://doi.org/10.1016/j.engfracmech.2021.108090
- Influential factors for double-K fracture parameters analyzed by the round robin tests of RILEM TC265-TDK vol.54, pp.6, 2012, https://doi.org/10.1617/s11527-021-01791-x
- Size effects on the characteristics of fracture process zone of plain concrete under three-point bending vol.315, pp.None, 2012, https://doi.org/10.1016/j.conbuildmat.2021.125725