• 제목/요약/키워드: fracture process zone

검색결과 180건 처리시간 0.025초

콘크리트 파괴진행영역의 유한요소모델링 (Finite Element Modeling of Fracture Process Zone in Concrete)

  • 송하원;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.35-41
    • /
    • 1995
  • Fracture Mechanics does work for concrete, provided that a finite nonlinear zone at fracture front is being considered. The development of model for fracture process zone is most important to describe fracture phenomena in concrete. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrack with stresses transmitted by aggregates in concrete, is model led by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the model of fracture process zone in concrete.

  • PDF

경계요소법에 의한 콘크리트 원통형관의 파괴해석 (Fracture Analysis of Concrete Cylinder by Boundary Element Method)

  • 송하원;전재홍;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.171-177
    • /
    • 1995
  • Fracture mechanics does work for concrete, provided that one uses a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, and the development of model of fracture process zone is most important to describe fracture phenomena in concrete. This paper is about fracture behavior of concrete cylinder under lateral pressure. Concrete cylinders were made of high strength normal connote, steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete and concrete and the fracture behavior such as cracking propagation and ultimate load are observed. The fracture process zone is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve and are implemented to the boundary element technique for the fracture analyses of the cylinders. The experimental results are compared with analysis results and tension-softening curves for the steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete are obtained by back analyses.

  • PDF

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • 제19권1E호
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

An analytical and computational study on energy dissipation along fracture process zone in concrete

  • Zhao, Yanhua;Xu, Shilang;Li, Zongjin
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.47-60
    • /
    • 2004
  • The influence of the fracture process zone (FPZ) on the fracture properties is one of the hottest topics in the field of fracture mechanics for cementitious materials. Within the FPZ in front of a traction free crack, cohesive forces are distributed in accordance with the softening stress-separation constitutive relation of the material. Therefore, further crack propagation necessitates energy dissipation, which is the work done by the cohesive forces. In this paper $g_f$, the local fracture energy characterizing the energy consumption due to the cohesive forces, is discussed. The computational expression of $g_f$ in the FPZ can be obtained for any stage during the material fracture process regarding the variation of FPZ, whether in terms of its length or width. $G_{fa}$, the average energy consumption along the crack extension region, has also been computed and discussed in this paper. The experimental results obtained from the wedge splitting tests on specimens with different initial notch ratios are employed to investigate the property of the local fracture energy $g_f$ and the average value $G_{fa}$ over the crack extension length. These results can be used to indicate the influence of the FPZ. Additionally, changes in the length of the FPZ during the fracture process are also studied.

유한요소법에 의한 콘크리트의 진행성 파괴해석 (Progressive Fracture Analyses of Concrete by Finite Element Methods)

  • 송하원
    • 콘크리트학회지
    • /
    • 제8권1호
    • /
    • pp.145-153
    • /
    • 1996
  • 콘크리트의 파괴진행영역은 콘크리트의 균열선단의 브리징영역과 미세균열영역으로 구성되는 비선형영역으로서 콘크리트의 파기거동을 지배한다. 파괴진행영역을 고려한 파괴역학은 콘크리트에 유용하게 적용될 수 있으며 파괴진행영역 모델의 개발은 콘크리트의 파괴현상을 규명하는데 매우 중요하다. 본 논문에서는 콘크리트의 균열진행을 해석하기 위하여 선형 인장 연화곡선을 사용한 Dugdale-Barenblatt형 모델로 콘크리트의 브리징영역을 모델링하였고 이를 이산균열방법을 사용하여 단지 요소경계면에 파괴진행영역을 발생시켜 유한요소 해석하는 방법과 요소내의 불연속 균열면을 도입한 균열요소를 사용함으로써 이산균열방법의 결점을 보완한 해석방법을 제시하였다. 또한 해석 예를 통해 균열진행해석에 사용된 유한요소모델을 검증하였다.

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

SB발파에서 파단면 제어의 고도화에 관한 연구 (Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method)

  • 조상호;정윤영;김광염;가네꼬 카츠히꼬
    • 터널과지하공간
    • /
    • 제19권4호
    • /
    • pp.366-372
    • /
    • 2009
  • 최근, 암반발파에서 평활한 파단면과 굴착손상영역을 제어하기 위한 목적으로 전자지발뇌관 및 노치장약공 등을 이용한 제어발파기술들이 개발되어 오고 있다. 본 연구에서는 날개형 노치 장약공을 이용한 SB발파에서 암반 내 파괴과정을 모사하여 파단면과 암반손상제어에 미치는 영향인자에 대하여 고찰하였다. 최종적으로 장약공 노치의 파단면 제어효과에 관한 수치해석적 고찰을 날개형 노치장약공과 전자뇌관을 이용한 새로운 SB발파법으로, ED-Notch SB발파법(Elerectronic Detonator Notched Charge Hole Smooth Blasting Method)을 제안하였다.

콘크리트 균열진행의 유한요소 정규화 (Finite Element Regularization of Progressive Cracks in Concrete)

  • 송하원;변근주;이주영;서철;심별
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.279-284
    • /
    • 1994
  • Fracture mechanics does work for concrete, provided that one used a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to the toughness induced by the microcracking, so that the bridging is the dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrck with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with lenear tension-softening curve for the analyses of crack growth in concrete Finite element technique is shown for inplementation of the model.

  • PDF

원전 배관재 다층 용접부의 파괴 특성에 관한 연구 (A Study on the Characteristic of Fracture Toughness in the Multi-Pass Welding Zone for Nuclear Piping)

  • 박재실;석창성
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.381-389
    • /
    • 2001
  • The objective of this paper is to evaluate the fracture resistance characteristics of SA508 Cl.1a to SA508 Cl.3 welds manufactured for the reactor coolant loop piping system of nuclear power plants. The effect of the crack plane orientation to the welding process orientation and the preheat temperature on the fracture resistance characteristics were discussed. Results of the fracture resistance test showed that the effect of the crack plane orientation to the welding process orientation of the fracture toughness is significant, while that of preheat temperature on the fracture toughness is negligible. The micro Vickers hardness test, the metallographic observation and the fractography analysis were conducted to analyse the crack jump phenomenon on the L-R crack plane orientation in the multi-pass welding zone. As these results, it is shown that the crack jump phenomenon was produced because of the inhomogeneity between welding beads and the crack plane orientation must be considered for the safety of the welding zone in the piping system.