• Title/Summary/Keyword: adaptive damper

Search Result 63, Processing Time 0.022 seconds

Adaptive MR damper cable control system based on piezoelectric power harvesting

  • Guan, Xinchun;Huang, Yonghu;Li, Hui;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.33-46
    • /
    • 2012
  • To reduce the vibration of cable-stayed bridges, conventional magnetorheological (MR) damper control system (CMRDS), with separate power supply, sensors and controllers, is widely investigated. In this paper, to improve the reliability and performance of the control system, one adaptive MR damper control system (AMRDS) consisting of MR damper and piezoelectric energy harvester (PEH) is proposed. According to piezoelectric effect, PEH can produce energy for powering MR damper. The energy is proportional to the product of the cable displacement and velocity. Due to the damping force changing with the energy, the new system can be adjustable to reduce the cable vibration. Compared with CMRDS, the new system is structurally simplified, replacing external sensor, power supply and controller with PEH. In the paper, taking the N26 cable of Shandong Binzhou Yellow River Bridge as example, the design method for the whole AMRDS is given, and simple formulas for PEH are derived. To verify the effectiveness of the proposed adaptive control system, the performance is compared with active control case and simple Bang-Bang semi-active control case. It is shown that AMRDS is better than simple Bang-Bang semi-active control case, and still needed to be improved in comparison with active control case.

Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change

  • Contreras, Michael T.;Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.219-233
    • /
    • 2014
  • In a companion paper, Pasala and Nagarajaiah analytically and experimentally validate the Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) on a primary structure (2 story steel structure) whose frequencies are time invariant (Pasala and Nagarajaiah 2012). In this paper, the ALP-STMD effectiveness on a primary structure whose frequencies are time varying is studied experimentally. This study experimentally validates the ability of an ALP-STMD to adequately control a structural system in the presence of real time changes in primary stiffness that are detected by a real time observer based system identification. The experiments implement the newly developed Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) which was first introduced and developed by Nagarajaiah (2009), Nagarajaiah and Pasala (2010) and Nagarajaiah et al. (2010). The ALP-STMD employs a mass pendulum of variable length which can be tuned in real time to the parameters of the system using sensor feedback. The tuning action is made possible by applying a current to a shape memory alloy wire changing the effective length that supports the damper mass assembly in real time. Once a stiffness change in the structural system is detected by an open loop observer, the ALP-STMD is re-tuned to the modified system parameters which successfully reduce the response of the primary system. Significant performance improvement is illustrated for the stiffness modified system, which undergoes the re-tuning adaptation, when compared to the stiffness modified system without adaptive re-tuning.

Performance Evaluation of Commercial Vehicle with MR Seat Damper (MR 시트댐퍼를 장착한 상용차의 제어성능 평가)

  • 성금길;이호근;남무호;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1048-1053
    • /
    • 2003
  • This paper proposed a MR(Magneto-rheological) seat damper for a commercial vehicle. After formulating the governing equation of motion, an appropriate size of damper is designed and manufactured. Following the equation of fie d-dependent damping force characteristics, a semi-active seat suspension installed with the proposed MR-damper is constructed and its dynamic model id established, Subsequently, vibration isolation performance of the semi-active suspension system is demonstrated by incorporating with a MRAC(Model referenced adaptive control) fer the MR Seat Damper

  • PDF

Performance Evaluation of Multi-Hazard Adaptive Smart Control Technique Based on Connective Control System (연결 제어 시스템 기반의 멀티해저드 적응형 스마트 제어 기술 성능 평가)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.97-104
    • /
    • 2018
  • A connected control method for the adjacent buildings has been studied to reduce dynamic responses. In these studies, seismic loads were generally used as an excitation. Recently, multi-hazards loads including earthquake and strong wind loads are employed to investigate control performance of various control systems. Accordingly, strong wind load as well as earthquake load was adopted to evaluate control performance of adaptive smart coupling control system against multi-hazard. To this end, an artificial seismic load in the region of strong seismicity and an artificial wind load in the region of strong winds were generated for control performance evaluation of the coupling control system. Artificial seismic and wind excitations were made by SIMQKE and Kaimal spectrum based on ASCE 7-10. As example buildings, two 20-story and 12-story adjacent buildings were used. An MR (magnetorheological) damper was used as an adaptive smart control device to connect adjacent two buildings. In oder to present nonlinear dynamic behavior of MR damper, Bouc-Wen model was employed in this study. After parametric studies on MR damper capacity, optimal command voltages for MR damper on each seismic and wind loads were investigated. Based on numerical analyses, it was shown that the adaptive smart coupling control system proposed in this study can provide very good control performance for Multi-hazards.

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

Development of Multi-Input Multi-Output Control Algorithm for Adaptive Smart Shared TMD (적응형 스마트 공유 TMD의 MIMO 제어알고리즘개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • A shared tuned mass damper (STMD) was proposed in previous research for reduction of dynamic responses of the adjacent buildings subjected to earthquake loads. A single STMD can provide similar control performance in comparison with two traditional TMDs. In previous research, a passive damper was used to connect the STMD with adjacent buildings. In this study, a smart magnetorheological (MR) damper was used instead of a passive damper to compose an adaptive smart STMD (ASTMD). Control performance of the ASTMD was investigated by numerical analyses. For this purpose, two 8-story buildings were used as example structures. Multi-input multi-output (MIMO) fuzzy logic controller (FLC) was used to control the command voltages sent to two MR dampers. The MIMO FLC was optimized by a multi-objective genetic algorithm. Numerical analyses showed that the ASTMD can effectively control dynamic responses of adjacent buildings subjected to earthquake excitations in comparison with a passive STMD.

Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller

  • Muthalif, Asan G.A.;Kasemi, Hasanul B.;Nordin, N.H. Diyana;Rashid, M.M.;Razali, M. Khusyaie M.
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • The aim of this research is to develop a new method to use magnetorheological (MR) damper for vibration control. It is a new way to achieve the MR damper response without the need to have detailed constant parameters estimations. The methodology adopted in designing the control structure in this work is based on the experimental results. In order to investigate and understand the behaviour of an MR damper, an experiment is first conducted. Force-displacement and force-velocity responses with varying current have been established to model the MR damper. The force for upward and downward motions of the damper piston is found to be increasing with current and velocity. In cyclic motion, which is the combination of upward and downward motions of the piston, the force with hysteresis behaviour is seen to be increasing with current. In addition, the energy dissipated is also found to be linear with current. A proportional-integral-derivative (PID) controller, based on the established characteristics for a quarter car suspension model, has been adapted in this study. A fuzzy rule based PID controller (F-PID) is opted to achieve better response for a varying frequency input. The outcome of this study can be used in the modelling of MR damper and applied to control engineering. Moreover, the identified behaviour can help in further development of the MR damper technology.

Simple adaptive control of seismically excited structures with MR dampers

  • Amini, F.;Javanbakht, M.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.275-290
    • /
    • 2014
  • In this paper, Simple Adaptive Control (SAC) method is used to mitigate the detrimental effects of earthquakes on MR-damper equipped structures. Acceleration Feedback (AF) is utilized since measuring the acceleration response of structures is known to be reliable and inexpensive. The SAC is simple, fast and as an adaptive control scheme, is immune against the effects of plant and environmental uncertainties. In the present study, in order to translate the desired control force into an applicable MR damper command voltage, a neural network inverse model is trained, validated and used through the simulations. The effectiveness of the proposed AF-based SAC control system is compared with optimal H2/LQG controllers through numerical investigation of a three-story model building. The results indicate that the SAC controller is substantially effective and reliable in both undamaged and damaged structural states, specifically in reducing acceleration responses of seismically excited buildings.

Position Control of Chained Multiple Mass-Spring-Damper Systems - Adaptive Output Feedback Control Approaches

  • S. S. Ge;L. Huang;Lee, T. H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.144-155
    • /
    • 2004
  • This paper addresses the issue of position control of a chain of multiple mass-spring-damper (CMMSD) units which can be found in many physical systems. The dynamic model of a CMMSD system with any degrees of freedom is expressed in a closed-form for the convenience of the controller design. Backstepping and model reference adaptive control (MRAC) approaches are then used to develop two adaptive output feedback controllers to control the position of a CMMSD system. The proposed controllers rely on the measurements of the input (force) and the output (position of the mass unit at the end of the chain) of the system without the knowledge of its parameters and internal states. Simulations are used to verify the effectiveness of the controllers