DOI QR코드

DOI QR Code

Recovery of Copper in Wastewater from Electroless Plating Process

무전해(無電解) 구리 도금폐액(鍍金廢液)으로부터 구리의 회수(回收) 연구(硏究)

  • 이화영 (한국과학기술연구원 에너지융합연구단) ;
  • 고현백 ((주)세화엔스텍 기술연구소)
  • Received : 2012.07.24
  • Accepted : 2012.09.28
  • Published : 2012.12.31

Abstract

An attempt to recover copper from electroless plating wastewater has been made through evaporation followed by the electrowinning method. From the determination of each element in electroless plating wastewater, the content of Cu was found to be 582 mg/l and small amount of Fe was also contained in it. Moreover, the content of COD and TOC which was resulted from the addition of Rochell salt was found to be 9,560 and 13,100 mg/l, respectively. The content of formic acid generated by the oxidation of formaldehyde was determined to be 7.73 %. As a result, current efficiency was decreased with increase in current density and therefore current density less than $40mA/cm^2$ should be maintained to obtain current efficiency more than 80 %. The content of Fe in Cu obtained by electrowinning was found to be 0.021 and 0.01 % at the concentration of sulfuric acid of 2 and 10 vol%, respectively.

무전해 구리 도금폐수로부터 증발농축 및 전해채취법을 이용하여 구리를 회수하기 위한 연구를 수행하였다. 무전해 구리 도금폐수의 분석결과, Cu 함량은 582 mg/l로 나타났으며, 미량의 Fe 성분이 함유되어 있었다. 또한, 로셀염의 첨가로 인하여 COD 9,560 mg/l, TOC 13,100 mg/l로써 매우 높았으며, 포름알데히드가 산화된 formic acid의 함량은 7.73%로 나타났다. 실험결과, 구리의 전해채취시 전류밀도가 증가할수록 전류효율은 감소하는 것으로 나타났다. 또한, 전류효율을 80% 이상으로 유지하기 위해서는 구리의 전해채취시 전류밀도를 $40mA/cm^2$ 이하로 낮추어야 함을 알 수 있었다. 전해채취를 통해 얻은 Cu중의 평균 Fe 함량은 황산농도 2 vol% 및 10 vol%에서 각각 0.021% 및 0.01%로 나타나 황산농도가 높을수록 Fe 혼입을 억제할 수 있는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. Lee, H. Y., Ko H. B., 2012: Recovery of Copper in Wastewater from Electroless Plating Process, Proc. of 2012 Spring Meeting and 38th Conference of KIRR, pp. 147-151, Kyungpook National University, Daegu, Korea, 17-18 May 2012, Printed in Korea.
  2. Lee, H. Y., 2012: Recovery of Nickel from Electroless Plating Wastewater by Electrolysis Method, J. of Korean Inst. of Resources Recycling, 21(2), pp. 41-46.
  3. Wong, F. S., et al., 2002: A pilot study on a membrane process for the treatment and recycling of spent final rinse water, Sep. Purif. Tech., 29, pp. 41-51. https://doi.org/10.1016/S1383-5866(02)00002-3
  4. Mostad, E., Rolseth, S., Thonstad, J., 2008: Electrowinning of iron from sulphate solutions, Hydrometallurgy, 90, pp. 213-220. https://doi.org/10.1016/j.hydromet.2007.07.014
  5. Mohammad, A. W., Othaman, R., Hilal, N., 2004: Potential use of nanofiltration membranes in treatment of industrial wastewater, Desalination, 168, pp. 241-252. https://doi.org/10.1016/j.desal.2004.07.004
  6. Li, P. P., Peng, C. S., Li, F. M., Song, S. X., Juan, A. O., 2011: Copper and Nickel Recovery from Electroplating Sludge by the Process of Acid-leaching and Electrodepositing, Int. J. Environ. Res., 5(3), pp. 797-804.
  7. Pumpel, T., et al., 2001: Treatment of rinsing water from electroless nickel plating with a biologically active moving-bed sand filter, Hydrometallurgy, 59, pp. 383-393. https://doi.org/10.1016/S0304-386X(00)00168-7
  8. Mohanty, U. S., Tripathy, B. C., Das, S. C., Singh, P., Misra, V. N., 2009: Effect of sodium lauryl sulphate on nickel electrowinning from acidic sulphate solutions, Hydrometallurgy, 100, pp. 60-64. https://doi.org/10.1016/j.hydromet.2009.10.003
  9. Orhan, G., Arslan, C., Bombach, H., Stelter, M., 2002: Nickel recovery from the rinse waters of plating baths, Hydrometallurgy, 65, pp. 1-8. https://doi.org/10.1016/S0304-386X(02)00038-5
  10. Mahmoud, S. S., 2009: Electroless deposition of nickel and copper on titanium substrates: Characterization and application, J. Alloys Comp., 472, pp. 595-601. https://doi.org/10.1016/j.jallcom.2008.05.079