DOI QR코드

DOI QR Code

Preparation of Corncob Grits as a Carrier for Immobilizing Yeast Cells for Ethanol Production

  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Lee, Choon Geun (Division of Biomaterials Engineering, Kangwon National University) ;
  • Kang, Do Hyung (Korea Institute of Ocean Science and Technology) ;
  • Lee, Hyeon-Yong (Department of Teaics, Seowon University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • Received : 2012.02.28
  • Accepted : 2012.07.24
  • Published : 2012.12.28

Abstract

In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride ($DEAE{\cdot}HCl$)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized $DEAE{\cdot}HCl$ derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M $DEAE{\cdot}HCl$, the yeast cell suspension ($OD_{600}$ = 3.0) was adsorbed at >90% of the initial cell $OD_{600}$. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The $Q_{max}$ (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAE-corncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.

Keywords

References

  1. Amory, D. E. and P. G. Rouxhet. 1988. Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: Chemical composition, electrostatic charge and hydrophobicity. Biochim. Biophys. Acta 938: 16-70.
  2. Bardi, E. P. and A. A. Koutinas. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and lowtemperature wine making. J. Agric. Food Chem. 42: 221-226. https://doi.org/10.1021/jf00037a040
  3. Branyik, T., D. P. Silva, A. A. Vicente, R. Lehnert, J. B. A. e Silva, P. Dostalek, and J. A. Teixeira. 2006. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J. Ind. Microbiol. Biotechnol. 33: 1010-1018. https://doi.org/10.1007/s10295-006-0151-y
  4. Cashin, M.-M. 1996. Comparative studies of five porous supports for yeast immobilization by adsorption/attachment. J. Inst. Brew. 102: 5-10. https://doi.org/10.1002/j.2050-0416.1996.tb00888.x
  5. Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis; A Practical Approach. IRL Press, Oxford, UK.
  6. Efremenko, E. N., N. A. Stepanova, A. B. Nikolskaya, O. V. Senko, O. V. Spiricheva, and S. D. Varfolomeev. 2011. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catal. Ind. 3: 41-46. https://doi.org/10.1134/S207005041101003X
  7. Genisheva, Z., S. I. Mussatto, J. M. Oliveira, and J. A. Teixeira. 2011. Evaluating the potential of wine-making residues and corncobs as support materials for cell immobilization for ethanol production. Ind. Crop. Prod. 34: 979-985. https://doi.org/10.1016/j.indcrop.2011.03.006
  8. Guo, X., J. Zhou, and D. Xiao. 2010. Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl. Biochem. Biotechnol. 160: 532-538. https://doi.org/10.1007/s12010-008-8412-z
  9. Inloes, D. S., D. P. Taylor, S. N. Cohen, A. S. Michaels, and C. R. Robertson. 1983. Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl. Environ. Microbiol. 46: 264-278.
  10. Kaur, P., G. S. Kocher, and R. P. Phutela. 2011. Production of tea vinegar by batch and semicontinuous fermentation. J. Food Sci. Technol. 48: 755-758. https://doi.org/10.1007/s13197-010-0143-9
  11. Kocher, G. S., K. L. Kalra, and R. P. Phutela. 2006. Comparative production of sugarcane vinegar by different immobilization techniques. J. Inst. Brew. 112: 264-266. https://doi.org/10.1002/j.2050-0416.2006.tb00722.x
  12. Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
  13. Kratochvil, D. and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291-300. https://doi.org/10.1016/S0167-7799(98)01218-9
  14. Kumar, S., S. P. Singh, I. M. Mishra, and D. K. Adhikari. 2011. Continuous ethanol production by Kluyveromyces sp. IIPE453 immobilized on bagasse chips in packed bed reactor. J. Petrol. Technol. Altern. Fuels 2: 1-6.
  15. Lee, C. W. and H. N. Chang. 1987. Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol. Bioeng. 29: 1105-1112. https://doi.org/10.1002/bit.260290910
  16. Margaritis, A. and F. J. A. Merchant. 1984. Advances in ethanol production using immobilized cell systems. CRC Crit. Rev. Biotechnol. 1: 339-393.
  17. Moo-Young, M., J. Lamptey, and C. W. Robinson. 1980. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 2: 541-548. https://doi.org/10.1007/BF00134904
  18. Nagashima, M., M. Azuma, S. Noguchi, K. Inuzuka, and H. Samejima. 1984. Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26: 992-997. https://doi.org/10.1002/bit.260260826
  19. Najafpour, G., H. Younesi, and K. S. K. Ismail. 2004. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251-260. https://doi.org/10.1016/j.biortech.2003.09.009
  20. Plangklang, P. and A. Reungsang. 2010. Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Biochem. 45: 230-238. https://doi.org/10.1016/j.procbio.2009.09.013
  21. Plangklang, P. and A. Reungsang. 2009. Bioaugmentation of carbofuran residues in soil using Burkholderia cepacia PCL3 adsorbed on agricultural residues. Int. Biodeterior. Biodegrad. 63: 515-522. https://doi.org/10.1016/j.ibiod.2009.02.003
  22. Razmovski, R. and V. Vu uroviæ. 2011. Ethanol production from sugar beet molasses by Saccharomyces cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme Microb. Technol. 48: 378-385. https://doi.org/10.1016/j.enzmictec.2010.12.015
  23. Silva, D. P., T. Brányik, G. Dragone, A. A. Vicente, J. A. Teixeira, and J. B. A. e Silva. 2008. High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chem. Pap. 62: 34-41. https://doi.org/10.2478/s11696-007-0076-6
  24. Singh, N. L., P. Srivastava, and P. K. Mishra. 2009. Studies on ethanol production using immobilized cells of Kluyveromyces thermotolerans in a packed bed reactor. J. Sci. Ind. Res. 68: 617-623.
  25. Teerakun, M., A. Reungsang, K. Srisuk, C. J. Lin, and C. H. Liao. 2010. Performance of oxygen-carbon-inducer releasing material for biodegradation of trichloroethylene, cis-dichloroethylene and vinyl chloride. Biotechnology 9: 294-303. https://doi.org/10.3923/biotech.2010.294.303
  26. Verbelen, P. J., D. P. De Schutter, F. Delvaux, K. J. Verstrepen, and F. R. Delvaux. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 28: 1515-1525. https://doi.org/10.1007/s10529-006-9132-5
  27. Vijayaraghavan, K. and Y.-S. Yun. 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26: 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
  28. Wada, M., J. Kato, and I. Chibata. 1980. Continuous production of ethanol using immobilized growing yeast cells. Appl. Microbiol. Biotechnol. 10: 275-287. https://doi.org/10.1007/BF00498725
  29. Williams, D. and D. M. Munnecke. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23: 1813-1825. https://doi.org/10.1002/bit.260230809
  30. Yeon, J.-H., S.-E. Lee, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
  31. Yu, J., X. Zhang, and T. Tan. 2007. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129: 415-420. https://doi.org/10.1016/j.jbiotec.2007.01.039

Cited by

  1. Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate vol.23, pp.10, 2012, https://doi.org/10.4014/jmb.1304.04014
  2. Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor vol.42, pp.3, 2012, https://doi.org/10.5941/myco.2014.42.3.249
  3. Ethanol Production from Glycerol by the Yeast Pachysolen tannophilus Immobilized on Celite during Repeated-Batch Flask Culture vol.42, pp.3, 2014, https://doi.org/10.5941/myco.2014.42.3.305
  4. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation vol.22, pp.9, 2012, https://doi.org/10.1007/s11356-014-3872-x
  5. Influence of operational parameters on the fluid-side mass transfer resistance observed in a packed bed bioreactor vol.5, pp.None, 2012, https://doi.org/10.1186/s13568-015-0111-x
  6. Ethanol Production from Glycerol Using Immobilized Pachysolen tannophilus During Microaerated Repeated-Batch Fermentor Culture vol.25, pp.3, 2012, https://doi.org/10.4014/jmb.1409.09030
  7. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor vol.5, pp.1, 2015, https://doi.org/10.1186/s13568-015-0138-z
  8. Comparative analysis of stirred catalytic basket bio-reactor for the production of bio-ethanol using free and immobilized Saccharomyces cerevisiae cells vol.7, pp.1, 2012, https://doi.org/10.1186/s13568-017-0460-8
  9. FLO1 , FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.02586
  10. Co-culturing corncob-immobilized yeasts on orange peels for the production of pectinase vol.42, pp.9, 2012, https://doi.org/10.1007/s10529-020-02897-y