References
- Amory, D. E. and P. G. Rouxhet. 1988. Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: Chemical composition, electrostatic charge and hydrophobicity. Biochim. Biophys. Acta 938: 16-70.
- Bardi, E. P. and A. A. Koutinas. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and lowtemperature wine making. J. Agric. Food Chem. 42: 221-226. https://doi.org/10.1021/jf00037a040
- Branyik, T., D. P. Silva, A. A. Vicente, R. Lehnert, J. B. A. e Silva, P. Dostalek, and J. A. Teixeira. 2006. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J. Ind. Microbiol. Biotechnol. 33: 1010-1018. https://doi.org/10.1007/s10295-006-0151-y
- Cashin, M.-M. 1996. Comparative studies of five porous supports for yeast immobilization by adsorption/attachment. J. Inst. Brew. 102: 5-10. https://doi.org/10.1002/j.2050-0416.1996.tb00888.x
- Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis; A Practical Approach. IRL Press, Oxford, UK.
- Efremenko, E. N., N. A. Stepanova, A. B. Nikolskaya, O. V. Senko, O. V. Spiricheva, and S. D. Varfolomeev. 2011. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catal. Ind. 3: 41-46. https://doi.org/10.1134/S207005041101003X
- Genisheva, Z., S. I. Mussatto, J. M. Oliveira, and J. A. Teixeira. 2011. Evaluating the potential of wine-making residues and corncobs as support materials for cell immobilization for ethanol production. Ind. Crop. Prod. 34: 979-985. https://doi.org/10.1016/j.indcrop.2011.03.006
- Guo, X., J. Zhou, and D. Xiao. 2010. Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl. Biochem. Biotechnol. 160: 532-538. https://doi.org/10.1007/s12010-008-8412-z
- Inloes, D. S., D. P. Taylor, S. N. Cohen, A. S. Michaels, and C. R. Robertson. 1983. Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl. Environ. Microbiol. 46: 264-278.
- Kaur, P., G. S. Kocher, and R. P. Phutela. 2011. Production of tea vinegar by batch and semicontinuous fermentation. J. Food Sci. Technol. 48: 755-758. https://doi.org/10.1007/s13197-010-0143-9
- Kocher, G. S., K. L. Kalra, and R. P. Phutela. 2006. Comparative production of sugarcane vinegar by different immobilization techniques. J. Inst. Brew. 112: 264-266. https://doi.org/10.1002/j.2050-0416.2006.tb00722.x
- Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
- Kratochvil, D. and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291-300. https://doi.org/10.1016/S0167-7799(98)01218-9
- Kumar, S., S. P. Singh, I. M. Mishra, and D. K. Adhikari. 2011. Continuous ethanol production by Kluyveromyces sp. IIPE453 immobilized on bagasse chips in packed bed reactor. J. Petrol. Technol. Altern. Fuels 2: 1-6.
- Lee, C. W. and H. N. Chang. 1987. Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol. Bioeng. 29: 1105-1112. https://doi.org/10.1002/bit.260290910
- Margaritis, A. and F. J. A. Merchant. 1984. Advances in ethanol production using immobilized cell systems. CRC Crit. Rev. Biotechnol. 1: 339-393.
- Moo-Young, M., J. Lamptey, and C. W. Robinson. 1980. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 2: 541-548. https://doi.org/10.1007/BF00134904
- Nagashima, M., M. Azuma, S. Noguchi, K. Inuzuka, and H. Samejima. 1984. Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26: 992-997. https://doi.org/10.1002/bit.260260826
- Najafpour, G., H. Younesi, and K. S. K. Ismail. 2004. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251-260. https://doi.org/10.1016/j.biortech.2003.09.009
- Plangklang, P. and A. Reungsang. 2010. Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Biochem. 45: 230-238. https://doi.org/10.1016/j.procbio.2009.09.013
- Plangklang, P. and A. Reungsang. 2009. Bioaugmentation of carbofuran residues in soil using Burkholderia cepacia PCL3 adsorbed on agricultural residues. Int. Biodeterior. Biodegrad. 63: 515-522. https://doi.org/10.1016/j.ibiod.2009.02.003
- Razmovski, R. and V. Vu uroviæ. 2011. Ethanol production from sugar beet molasses by Saccharomyces cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme Microb. Technol. 48: 378-385. https://doi.org/10.1016/j.enzmictec.2010.12.015
- Silva, D. P., T. Brányik, G. Dragone, A. A. Vicente, J. A. Teixeira, and J. B. A. e Silva. 2008. High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chem. Pap. 62: 34-41. https://doi.org/10.2478/s11696-007-0076-6
- Singh, N. L., P. Srivastava, and P. K. Mishra. 2009. Studies on ethanol production using immobilized cells of Kluyveromyces thermotolerans in a packed bed reactor. J. Sci. Ind. Res. 68: 617-623.
- Teerakun, M., A. Reungsang, K. Srisuk, C. J. Lin, and C. H. Liao. 2010. Performance of oxygen-carbon-inducer releasing material for biodegradation of trichloroethylene, cis-dichloroethylene and vinyl chloride. Biotechnology 9: 294-303. https://doi.org/10.3923/biotech.2010.294.303
- Verbelen, P. J., D. P. De Schutter, F. Delvaux, K. J. Verstrepen, and F. R. Delvaux. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 28: 1515-1525. https://doi.org/10.1007/s10529-006-9132-5
- Vijayaraghavan, K. and Y.-S. Yun. 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26: 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
- Wada, M., J. Kato, and I. Chibata. 1980. Continuous production of ethanol using immobilized growing yeast cells. Appl. Microbiol. Biotechnol. 10: 275-287. https://doi.org/10.1007/BF00498725
- Williams, D. and D. M. Munnecke. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23: 1813-1825. https://doi.org/10.1002/bit.260230809
- Yeon, J.-H., S.-E. Lee, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
- Yu, J., X. Zhang, and T. Tan. 2007. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129: 415-420. https://doi.org/10.1016/j.jbiotec.2007.01.039
Cited by
- Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate vol.23, pp.10, 2012, https://doi.org/10.4014/jmb.1304.04014
- Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor vol.42, pp.3, 2012, https://doi.org/10.5941/myco.2014.42.3.249
- Ethanol Production from Glycerol by the Yeast Pachysolen tannophilus Immobilized on Celite during Repeated-Batch Flask Culture vol.42, pp.3, 2014, https://doi.org/10.5941/myco.2014.42.3.305
- Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation vol.22, pp.9, 2012, https://doi.org/10.1007/s11356-014-3872-x
- Influence of operational parameters on the fluid-side mass transfer resistance observed in a packed bed bioreactor vol.5, pp.None, 2012, https://doi.org/10.1186/s13568-015-0111-x
- Ethanol Production from Glycerol Using Immobilized Pachysolen tannophilus During Microaerated Repeated-Batch Fermentor Culture vol.25, pp.3, 2012, https://doi.org/10.4014/jmb.1409.09030
- Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor vol.5, pp.1, 2015, https://doi.org/10.1186/s13568-015-0138-z
- Comparative analysis of stirred catalytic basket bio-reactor for the production of bio-ethanol using free and immobilized Saccharomyces cerevisiae cells vol.7, pp.1, 2012, https://doi.org/10.1186/s13568-017-0460-8
- FLO1 , FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.02586
- Co-culturing corncob-immobilized yeasts on orange peels for the production of pectinase vol.42, pp.9, 2012, https://doi.org/10.1007/s10529-020-02897-y