References
- Bajpai, P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 15: 147-157. https://doi.org/10.1021/bp990013k
- Betini, J. H., M. Michelin, S. C. Peixoto-Nogueira, J. A. Jorge, H. F. Terenzi, and M. L. Polizeli 2009. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst. Eng. 32: 819-824. https://doi.org/10.1007/s00449-009-0308-y
- Buchert, J., M. Tenkanen, A. Kantelinen, and L. Viikari 1994. Application of xylanases in the pulp and paper industry. Bioresour. Technol. 50: 65-72. https://doi.org/10.1016/0960-8524(94)90222-4
- Christov, L. P., G. Szakacs, and H. Balakrishnan 1999. Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching. Process Biochem. 34: 511-517. https://doi.org/10.1016/S0032-9592(98)00117-4
- Collins, T., C. Gerday, and G. Feller 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Daniel, R. 2004. The soil metagenome--a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204. https://doi.org/10.1016/j.copbio.2004.04.005
- Duarte, M. C. T., A. C. A. Pellegrino, E. P. Portugal, A. N. Ponezi, and T. T. Franco 2000. Characterization of alkaline xylanases from Bacillus pumilus. Braz. J. Microbiol. 31: 90-94.
- Duarte, M. C., E. C. da Silva, I. M. de Bulhoes Gomes, A. N. Ponezi, E. P. Portugal, J. R. Vicente, et al. 2003. Xylanhydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour. Technol. 88: 9-15. https://doi.org/10.1016/S0960-8524(02)00270-5
- El-Shahed, K. Y. I. and M. El-Sakhawy 2003. Improvement of kraft bagasse pulp bleachability by treatment with fungi and their enzymes. IPPTA: Quarterly J. Indian Pulp and Paper Technical Association 15: 45-51.
- Fushinobu, S., K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 11: 1121-1128. https://doi.org/10.1093/protein/11.12.1121
- Gessesse, A. 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64: 3533-3535.
- Giridhar, P. V. and T. S. Chandra 2010. Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Proc. Biochem. 45:1730-1737. https://doi.org/10.1016/j.procbio.2010.07.012
- Gupta, S., B. Bhushan, and G. S. Hoondal 2000. Isolation, purification and characterization of xylanasefrom Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J. Appl. Microbiol. 88: 325-334. https://doi.org/10.1046/j.1365-2672.2000.00974.x
- Hakulinen, N., O. Turunen, J. Janis, M. Leisola, and J. Rouvinen 2003. Three-dimensional structures of thermophilic beta-1,4- xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem. 270: 1399-1412. https://doi.org/10.1046/j.1432-1033.2003.03496.x
- Iefuji, H., M. Chino, M. Kato, and Y. Iimura 1996. Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60: 1331-1338. https://doi.org/10.1271/bbb.60.1331
- Inagaki, K., K. Nakahira, K. Mukai, T. Tamura, and H. Tanaka 1998. Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci. Biotechnol. Biochem. 62: 1061-1067. https://doi.org/10.1271/bbb.62.1061
- Jeya, M., S. Thiagarajan, J. K. Lee, and P. Gunasekaran 2009. Cloning and expression of GH11 xylanase gene from Aspergillus fumigatus MKU1 in Pichia pastoris. J. Biosci. Bioeng. 108: 24-29. https://doi.org/10.1016/j.jbiosc.2009.02.003
- Jiang, Z., X. Li, S. Yang, L. Li, Y. Li, and W. Feng 2006. Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritima on wheat straw pulp. Appl. Microbiol. Biotechnol. 70: 65-71. https://doi.org/10.1007/s00253-005-0036-4
- Kimura, T., J. Ito, A. Kawano, T. Makino, H. Kondo, S. Karita, et al. 2000. Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp.40. Biosci. Biotechnol. Biochem. 64: 1230-1237. https://doi.org/10.1271/bbb.64.1230
- Khonzue, P., T. Laothanachareon, N. Rattanaphan, P. Tinnasulanon, S. Apawasin, A. Paemanee, et al. 2011. Optimization of xylanase production from Aspergillus niger for biobleaching of eucalyptus pulp. Biosci. Biotechnol. Biochem. 75: 1129-1134. https://doi.org/10.1271/bbb.110032
- Krengel, U. and B. W. Dijkstra 1996. Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol. Biol. 263: 70-78. https://doi.org/10.1006/jmbi.1996.0556
- Li, C., Yuzhi, H., Zongze, S., Ling, L., Xiaoluo, H., Pengfu, L., Gaobing, W., Xin, M., and L. Ziduo 2010. Novel alkali-stable, cellulase-free xylanase from deep-sea Kocuria sp. Mn22. J. Microbiol. Biotechnol. 19: 873-880.
- Mamo, G., Thunnissen, M., Hatti-Kaul, R., and B. Mattiasson 2009. An alkaline active xylanase: Insights into mechanisms of high pH adaptation. Biochemie 91: 1187-1196. https://doi.org/10.1016/j.biochi.2009.06.017
- Medeiros, R. G., F. G. Silva Jr., S. N. Báo, R. Hanada, and E. X. Ferreira Filho 2007. Application of xylanases from Amazon Forest fungal species in bleaching of eucalyptus kraft pulps. Braz. Arch. Biol. Technol. 50: 231-238.
- Miller, G. L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Ninawe, S. and R. C. Kuhad 2006. Bleaching of wheat strawrich soda pulp with xylanase from a thermoalkaliphilic Streptomyces cyaneus SN32. Bioresour. Technol. 97: 2291-2295. https://doi.org/10.1016/j.biortech.2005.10.035
- Paice, M. G., N. Gurnagul, D. H. Page, and L. Jurasek 1992. Mechanism of hemicellulose-directed prebleaching of kraft pulps. Enzyme Microb. Technol. 14: 272-276. https://doi.org/10.1016/0141-0229(92)90150-M
- Ragauskas, A. J., K. M. Poll, and A. J. Cesternino 1994. Effects of xylanase pretreatment procedures on nonchlorine bleaching. Enzyme Microb. Technol. 16: 492-495. https://doi.org/10.1016/0141-0229(94)90019-1
- Raghukumar, C., U. Muraleedharan, V. R. Gaud, and R. Mishra 2004. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol. 31: 433-441. https://doi.org/10.1007/s10295-004-0165-2
- Rattanachomsri, U., S. Tanapongpipat, L. Eurwilaichitr, and V. Champreda 2009. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J. Biosci. Bioeng. 107: 488-493. https://doi.org/10.1016/j.jbiosc.2008.12.024
- Sandrim, V. C., A. C. S. Rizzatti, H. F. Terenzi, J. A. Jorge, A. M. F. Milagres, and M. L. T. M. Polizeli 2005. Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem. 40: 1823-1828. https://doi.org/10.1016/j.procbio.2004.06.061
- Senthilkumar, S. R., M. Dempsey, C. Krishnan, and P. Gunasekaran 2008. Optimization of biobleaching of paper pulp in an expanded bed bioreactor with immobilized alkali stable xylanase by using response surface methodology. Bioresour. Technol. 99: 7781-7787. https://doi.org/10.1016/j.biortech.2008.01.058
- Shedova, E. N., O. V. Berezina, N. A. Lunina, V. V. Zverlov, W. H. Schwartz, and G. A. Velikodvorskaia 2009. Cloning and characterization of a large metagenomic DNA fragment containing glycosyl-hydrolase genes. Mol. Gen. Mikrobiol. Virusol. 11-15.
- Shrinivas, D., Savitha, G., Raviranjan, K., and G. R. Naik 2010. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic bacillus sp. JB 99 suitable for paper and pulp industry: Purification and characterization. Appl. Biochem. Biotechnol. 162: 2049-2057. https://doi.org/10.1007/s12010-010-8980-6
- Torronen, A. and J. Rouvinen 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry. 34: 847-856. https://doi.org/10.1021/bi00003a019
- Vielle, C., and G. J. Zeikus 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
- Voget, S., H. L. Steele, and W. R. Streit 2006. Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 126: 26-36. https://doi.org/10.1016/j.jbiotec.2006.02.011
- Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450: 560-565. https://doi.org/10.1038/nature06269
- Warnick, T. A., B. A. Methe, and S. B. Leschine 2002. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol. 52: 1155-1160. https://doi.org/10.1099/ijs.0.02125-0
- Wongwilaiwalin, S., U. Rattanachomsri, T. Laothanachareon, L. Eurwilaichitr, Y. Igarashi, and V. Champreda 2010. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb. Technol. 47: 283-290. https://doi.org/10.1016/j.enzmictec.2010.07.013
- Zhao, J., X. Li, and Y. Qu 2006. Application of enzymes in producing bleached pulp from wheat straw. Bioresour. Technol. 97: 1470-1476. https://doi.org/10.1016/j.biortech.2005.07.012
- Zhu, H., F. Qu, and L. H. Zhu 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5279-5280. https://doi.org/10.1093/nar/21.22.5279
Cited by
- Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development vol.36, pp.6, 2012, https://doi.org/10.3109/07388551.2015.1083939
- From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects vol.10, pp.6, 2012, https://doi.org/10.1002/bbb.1709
- Metagenome-derived haloalkane dehalogenases with novel catalytic properties vol.101, pp.16, 2017, https://doi.org/10.1007/s00253-017-8393-3