References
- Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol. 36: 433-438. https://doi.org/10.1007/s10295-008-0514-7
- Chiara, B., G. Alessandro, M. Giorgio, R. Mila, T. Elena, and P. Brunella. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235. https://doi.org/10.1128/JB.01450-06
- Clifton, J. R. and G. J. C. Frohnsdorff. 1982. Stone consolidating materials: A status report, pp. 287-311. In: Conservation of Historic Stone Buildings and Monuments. National Academy Press Washington DC.
- De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
- De Muynck, W., N. De. Beliea, and W. Verstraeteb. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
- Dick, J., W. De Windt, B. De Graef, H. Saveyn, P. Van der Meeren, N. De Belie, and W. Verstraete. 2006. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17: 357-367. https://doi.org/10.1007/s10532-005-9006-x
- Dreesen, R. and M. Dusar. 2004. Historical building stones in the province of Limburg (NE Belgium): Role of petrography in provenance and durability assessment. Mater. Charact. 53: 273-287. https://doi.org/10.1016/j.matchar.2004.07.001
- Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
- Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
- Jonkers, H. M., A. Thijssena, G. Muyzerb, O. Copuroglua, and E. Schlangena. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235.
- Knust, F., N. Ogasawara, and I. Moszer. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256. https://doi.org/10.1038/36786
- Le Metayer-Levrel, G., S. Castanier, G. Orial, J. F. Loubier, and J. P. Perthuisot. 1999. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 126: 25-34. https://doi.org/10.1016/S0037-0738(99)00029-9
- Lewin, S. Z. and N. S. Baer. 1974. Rationale of the barium hydroxide-urea treatment of decayed stone. Studies Conserv. 19: 24-35. https://doi.org/10.2307/1505632
- Massimiliano, M., T. V. Pieter, B. Perito, M. Giorgio, and L. C. Martinez. 2010. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol. Ecol. 71: 341-350. https://doi.org/10.1111/j.1574-6941.2009.00805.x
- Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S.-Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
- Ramachandran, S. K., V. Ramkrishnan, and S. S. Bang. 2001. Remediation of concrete using microorganisms. ACI Mater. J. 98: 3-9.
- Rivadeneyra, M. A., R. Delgado, A. D. Moral, M. R. Ferrer, and A. Ramos-Cormenzana. 1994. Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol. 13: 197-204. https://doi.org/10.1111/j.1574-6941.1994.tb00066.x
- Rodriguez-Navarro, C., M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Munoz. 2003. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol. 69: 2182-2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
- Rodriguez-Navarro, C., E. Sebastian, and M. Rodriguez-Gallego. 1997. An urban model for dolomite precipitation: Authigenic dolomite on weathered building stones. Sediment. Geol. 109: 1-11. https://doi.org/10.1016/S0037-0738(96)00041-3
- Sarda, D., H. S. Choonia, D. D. Sarode, and S. S. Lele. 2009. Biocalcification by Bacillus pasteurii urease: A novel application. J. Ind. Microbiol. Biotechnol. 36: 1111-1115. https://doi.org/10.1007/s10295-009-0581-4
- Shirakawa, M. A., M. A. Cincotto, D. Atencio, C. C. Gaylarde, and V. M. John. 2011. Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis. Brazilian J. Microbiol. 42: 499-507. https://doi.org/10.1590/S1517-83822011000200014
- Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
- Tiano, P., E. Cantisani, I. Sutherland, and J. M. Paget. 2006. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit. 7: 49-55. https://doi.org/10.1016/j.culher.2005.10.003
- Vempada, S. R., S. S. P. Reddy, M. V. S. Rao, and C. Sasikala. 2011. Strength enhancement of cement mortar using micoorganisms: An experimental study. Int. J. Earth Sci. Eng. 4: 933-936.
- Wakefield, R. D. and M. S. Jones. 1998. An introduction to stone colonizing micro-organisms and biodeterioration of building stone. Q. J. Eng. Geol. 31: 301-313. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.03
- Wolff, S., H. Antelmann, D. Albrecht, D. Becher, J. Bernhardt, S. Bron, et al. 2007. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. J. Chromatogr. B 849: 129-140. https://doi.org/10.1016/j.jchromb.2006.09.029
Cited by
- The Effects of Paenibacillus polymyxa E681 on Antifungal and Crack Remediation of Cement Paste vol.69, pp.4, 2012, https://doi.org/10.1007/s00284-014-0604-x
- 다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정 vol.25, pp.2, 2012, https://doi.org/10.5352/jls.2015.25.2.237
- Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms vol.2, pp.None, 2012, https://doi.org/10.1038/npjbiofilms.2015.31
- Architects of nature: growing buildings with bacterial biofilms vol.10, pp.5, 2012, https://doi.org/10.1111/1751-7915.12833
- Improving the strength of sandy soils via ureolytic CaCO3 solidification by Sporosarcina ureae vol.15, pp.14, 2012, https://doi.org/10.5194/bg-15-4367-2018
- Crack filling in concrete by addition of Bacillus subtilis spores - Preliminary study vol.85, pp.205, 2018, https://doi.org/10.15446/dyna.v85n205.68591
- Effects of Bacillus subtilis biocementation on the mechanical properties of mortars vol.12, pp.1, 2012, https://doi.org/10.1590/s1983-41952019000100005
- Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete vol.30, pp.3, 2012, https://doi.org/10.4014/jmb.1908.08044
- Mortars with the addition of bacterial spores: Evaluation of porosity using different test methods vol.30, pp.None, 2012, https://doi.org/10.1016/j.jobe.2020.101235
- Bioprecipitation of calcium carbonate by Bacillus subtilis and its potential to self-healing in cement-based materials vol.18, pp.5, 2012, https://doi.org/10.22201/icat.24486736e.2020.18.5.1280
- Potential of cave isolated bacteria in self-healing of cement-based materials vol.45, pp.None, 2012, https://doi.org/10.1016/j.jobe.2021.103551