References
- Auesukaree, C., A. Damnernsawad, M. Kruatrachue, P. Pokethitiyook, C. Boonchird, Y. Kaneko, and S. Harashima. 2009. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J. Appl. Genet. 50: 301-310. https://doi.org/10.1007/BF03195688
- Cardoso, L. A., S. T. Ferreira, and M. Hermes-Lima. 2008. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comp. Biochem. Physiol. Mol. Integr. Physiol. 151: 313-321. https://doi.org/10.1016/j.cbpa.2007.03.025
- Carmel-Harel, O. and G. Storz. 2000. Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54: 439-461. https://doi.org/10.1146/annurev.micro.54.1.439
- Causton, H. C., B. Ren, S. S. Koh, C. T. Harbiso, E. Kanin, E. G. Jennings, et al. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12: 323-337. https://doi.org/10.1091/mbc.12.2.323
- Chen, Y. P., L. P. Xing, G. J. Wu, H. Z. Wang, X. E. Wang, A. Z. Cao, and P. D. Chen. 2007. Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant Cell Physiol. 48: 1702-1712. https://doi.org/10.1093/pcp/pcm142
- Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246. https://doi.org/10.1016/S0098-2997(01)00012-7
- Foyer, C. H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25. https://doi.org/10.1007/BF00386001
- Gietz, R. D. and R. A. Woods. 2001. Genetic transformation of yeast. Biotechniques 30: 816-820.
- Howlett, N. G. and S. V. Avery. 1997. Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl. Environ. Microbiol. 63: 2971-2976.
- Jamieson, D. J. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
- Kim, S. J., H. J. Jung, D. H. Hyun, E. H. Park, Y. M. Kim, and C. J. Lim. 2010. Glutathione reductase plays an anti-apoptotic role against oxidative stress in human hepatoma cells. Biochimie 92: 927-932. https://doi.org/10.1016/j.biochi.2010.03.007
- Koerkamp, M. G., M. Rep, H. J. Bussemaker, G. P. Hardy, A. Mul, K. Piekarska, et al. 2002. Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol. Biol. Cell 13: 2783-2794. https://doi.org/10.1091/mbc.E02-02-0075
- Lewinska, A. and G. Bartosz. 2007. Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic. Res. 41: 580-590. https://doi.org/10.1080/10715760701209904
- Liu, J., Y. Zhang, D. Huang, and G. Song. 2005. Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol. Cell. Biochem. 280: 139-145. https://doi.org/10.1007/s11010-005-8541-4
- Lopez-Mirabal, H. R. and J. R. Winther. 2008. Redox characteristics of the eukaryotic cytosol. Biochim. Biophys. Acta 1783: 629-640. https://doi.org/10.1016/j.bbamcr.2007.10.013
- Mishra, Y., N. Chaurasia, and L. C. Rai. 2009. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses. Biochem. Biophys. Res. Commun. 381: 606-611. https://doi.org/10.1016/j.bbrc.2009.02.100
- Mockett, R. J., R. S. Sohal, and W. C. Orr. 1999. Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J. 13: 1733-1742.
- Narayan, O. P., N. Kumari, and L. C. Rai. 2010. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses. Biochem. Biophys. Res. Commun. 394: 163-169. https://doi.org/10.1016/j.bbrc.2010.02.135
- Outten, C. E. and V. C. Culotta. 2004. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J. Biol. Chem. 279: 7785-7791.
- Pereira, M. D., E. C. Eleutherio, and A. D. Panek. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1: 11. https://doi.org/10.1186/1471-2180-1-11
- Roberts, R. J., M. Belfort, T. Bestor, A. S. Bhagwat, T. A. Bickle, J. Bitinaite, et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 31: 1805-1812. https://doi.org/10.1093/nar/gkg274
-
Schmidt, K., D. M. Wolfe, S. Stiller, and D. A. Pearce. 2009.
$Cd^{2+}$ ,$Mn^{2+}$ ,$Ni^{2+}$ and$Se^{2+}$ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem. Biophys. Res. Commun. 383: 198-202. https://doi.org/10.1016/j.bbrc.2009.03.151 - Schmitt, M. E., T. A. Brown, and B. L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091-3092. https://doi.org/10.1093/nar/18.10.3091
- Sebollela, A., P. R. Louzada, M. Sola-Penna, V. Sarone- Williams, T. Coelho-Sampaio, and S. T. Ferreira. 2004. Inhibition of yeast glutathione reductase by trehalose: Possible implications in yeast survival and recovery from stress. Int. J. Biochem. Cell Biol. 36: 900-908. https://doi.org/10.1016/j.biocel.2003.10.006
-
Seo, J. S., K. W. Lee, J. S. Rhee, D. S. Hwang, Y. M. Lee, H. G. Park, et al. 2006 Environmental stressors (salinity, heavy metals,
$H_2O_2$ ) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquat. Toxicol. 80: 281-289. https://doi.org/10.1016/j.aquatox.2006.09.005 - Shu, D. F., L. Y. Wang, M. Duan, Y. S. Deng, and Q. W. Meng. 2011. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol. Biochem. 49: 1228-1237. https://doi.org/10.1016/j.plaphy.2011.04.005
- Tan, S. X., D. Greetham, S. Raeth, C. M. Grant, I. W. Dawes, and G. G. Perrone. 2010. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J. Biol. Chem. 285: 6118-6126. https://doi.org/10.1074/jbc.M109.062844
- Tandogan, B. and N. N. Ulusu. 2007. The inhibition kinetics of yeast glutathione reductase by some metal ions. J. Enzyme Inhib. Med. Chem. 22: 489-495. https://doi.org/10.1080/14756360601162147
- Tandogan, B. and N. N. Ulusu. 2010. Comparative in vitro effects of some metal ions on bovine kidney cortex glutathione reductase. Prep. Biochem. Biotechnol. 40: 405-411. https://doi.org/10.1080/10826068.2010.525400
- Tandogan, B. and N. N. Ulusu. 2010. Inhibition of purified bovine liver glutathione reductase with some metal ions. J. Enzyme Inhib. Med. Chem. 25: 68-73. https://doi.org/10.3109/14756360903016512
- Tandogan, B. and N. N. Ulusu. 2010. Purification and kinetics of bovine kidney cortex glutathione reductase. Protein Pept. Lett. 17: 667-674. https://doi.org/10.2174/092986610791112684
- Ulusu, N. N. and B. Tandogan. 2007. Purification and kinetic properties of glutathione reductase from bovine liver. Mol. Cell. Biochem. 303: 45-51. https://doi.org/10.1007/s11010-007-9454-1
- Wenzel, T. J., A. W. Teunissen, and H. Y. de Steensma. 1995. PDA1 mRNA: A standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23: 883-884. https://doi.org/10.1093/nar/23.5.883
Cited by
- Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials vol.12, pp.None, 2012, https://doi.org/10.1186/1475-2859-12-87
- Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis vol.8, pp.2, 2012, https://doi.org/10.4161/psb.23021
- Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261 vol.18, pp.6, 2012, https://doi.org/10.1016/j.ejbt.2015.09.006
- Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell populations in early stationary phase vol.10, pp.None, 2012, https://doi.org/10.1186/s13068-017-0794-0
- Bioremediation and tolerance of zinc ions using Fusarium solani vol.6, pp.9, 2012, https://doi.org/10.1016/j.heliyon.2020.e05048