References
- Altschul, S. F., T. L. Madden, A. A. Sch ffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Arbona, V., D. J. Iglesias, M. Talon, and A. G. Cadenas. 2009. Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J. Agric. Food Chem. 57: 7338-7347. https://doi.org/10.1021/jf9009137
- Baek, J. G., S. M. Shim, D. Y. Kwon, H. K. Choi, C. H. Lee, and Y. S. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, inoculated with various Bacillus strains during fermentation. Biosci. Biotechnol. Biochem. 74: 1860-1868. https://doi.org/10.1271/bbb.100269
- Cha, M. H. and J. F. Park. 2001. Isolation and characterization of the strain producing angiotensin converting enzyme inhibitor from soy sauce. J. Korean Soc. Food Sci. Nutr. 30: 594-599.
- Cho, D. H. and W. J. Lee. 1970. Microbiological studies of Korean native soy sauce fermentation. J. Korean Agric. Chem. Soc. 13: 35-42.
- Choi, K. S., H. C. Chung, J. D. Choi, K. I. Kwon, M. H. Im, Y. J. Kim, and J. S. Seo. 1999. Effects of meju manufacturing periods on the fermentation characteristics of kanjang, Korean traditional soy sauce. J. Korean Soc. Agric. Chem. Biotechnol. 42: 277-282.
- Dettmer, K., P. A. Aronov, and B. D. Hammock. 2007. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26: 51-78. https://doi.org/10.1002/mas.20108
- Egounlety, M. and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean. J. Food Eng. 56: 249-254. https://doi.org/10.1016/S0260-8774(02)00262-5
- Farag, M. A., D. V. Huhman, Z. Lei, and L. W. Sumner. 2007. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68: 342-354. https://doi.org/10.1016/j.phytochem.2006.10.023
- Goodacre, R., S. Vaidyanathan, W. B. Dunn, G. G. Harrigan, and D. B. Kell. 2004. Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends Biotechnol. 22: 245-252. https://doi.org/10.1016/j.tibtech.2004.03.007
- Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, et al. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699.
- John, R. P., G. S. Anisha, K. M. Nampoothiria, and A. Pandeya. 2009. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145-152.
- Jung, K. O., S. Y. Park, and K. Y. Park. 2006. Longer aging time increases the anticancer and antimetastatic properties of doenjang. Nutrition 22: 539-545. https://doi.org/10.1016/j.nut.2005.11.007
- Kaneuchi, C., M. Seki, and K. Komagata. 1988. Production of succinic acid from citric acid and related acids by Lactobacillus strains. Appl. Environ. Microbiol. 54: 3053-3056.
- Kang, H. J., H. J. Yang, M. J. Kim, E. S. Han, H. J. Kim, and D. Y. Kwon. 2011. Metabolomic analysis of meju during fermentation by ultra performance liquid chromatographyquadrupoletime of flight mass spectrometry (UPLC-Q-TOF MS). Food Chem. 127: 1056-1064. https://doi.org/10.1016/j.foodchem.2011.01.080
- Kawamura, S., K. Nagao, and T. Kasai. 1977. Determination of free monosaccharides and detection of sugar alcohols in mature soybean seeds. J. Nutr. Sci. Vitaminol. 23: 249-255. https://doi.org/10.3177/jnsv.23.249
- Kim, A. J., J. N. Choi, S. B. Park, S. H. Yeo, J. H. Choi, and C. H. Lee. 2010. GC-MS based metabolite profiling of rice koji fermentation by various fungi. Biosci. Biotechnol. Biochem. 74: 2267-2272. https://doi.org/10.1271/bbb.100488
- Kim, J. Y., J. N. Choi, D. J. Kang, G. H. Son, Y. S. Kim, H. K. Choi, et al. 2011. Correlation between antioxidative activities and metabolite changes during cheonggukjang fermentation. Biosci. Biotechnol. Biochem. 75: 732-739. https://doi.org/10.1271/bbb.100858
- Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
- Kim, Y. S., M. C. Kim, S. W. Kwon, S. J. Kim, I. C. Park, J. O. Ka, and H. Y. Weon. 2011. Analyses of bacterial communities in Meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49: 340-348. https://doi.org/10.1007/s12275-011-0302-3
- Knapp, D. R. 1979. Handbook of Analytical Derivatization Reactions, pp. 2-6. John Wiley and Sons, New York.
- Ko, B. K., H. J. Ahn, F. Van den berg, C. H. Lee, and Y. S. Hong. 2009. Metabolomic insight into soy sauce through 1H NMR spectroscopy. J. Agric. Food Chem. 57: 6862-6870. https://doi.org/10.1021/jf901454j
- Kwon, D. Y., J. W. Daily III, and H. J. Kim. 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 30: 1-13. https://doi.org/10.1016/j.nutres.2009.11.004
- Lee, J. H., T. W. Kim, H. Lee, and H. C. Chang. 2010. Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 51: 388-394. https://doi.org/10.1111/j.1472-765X.2010.02906.x
- Metsa-Ketela, M., L. Halo, E. Munukka, J. Hakala, P. Mantsala, and K. Ylihonko. 2002. Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl. Environ. Microbiol. 68: 4472-4479. https://doi.org/10.1128/AEM.68.9.4472-4479.2002
- Mital, B. K. and K. H. Steinkraus. 1975. Utilization of oligosaccharides by lactic-acid bacteria during fermentation of soymilk. J. Food Sci. 40:114-118. https://doi.org/10.1111/j.1365-2621.1975.tb03749.x
- Nam, Y. D., S. Y. Lee, and S. I. Lim. 2012. Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155: 36-42. https://doi.org/10.1016/j.ijfoodmicro.2012.01.013
- Namgung, H. J., H. J. Park, I. H. Cho, H. K. Choi, D. Y. Kwon, S. M. Shim, and Y. S. Kim. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J. Sci. Food Agric. 90: 1926-1935.
- Oude Elferink, S. J., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber, and F. Driehuis. 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67: 125-132. https://doi.org/10.1128/AEM.67.1.125-132.2001
- Park, K. Y., K. O. Jung, S. H. Rhee, and Y. H. Choi. 2003. Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mut. Res. 523-524: 43-53.
- Park, M. K., I. H. Cho, S. Lee, H. K. Choi, D. Y. Kwon, and Y. S. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, during fermentation by gas chromatographymass spectrometry and principal component analysis. Food Chem. 122: 1313-1319. https://doi.org/10.1016/j.foodchem.2010.03.095
- Pyo, Y. E., T. C. Lee, and Y. C. Lee. 2005. Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: 215-220.
- Rodriguez Sanoja, R., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus alpha-amylase and role of the C-terminal direct repeats in rawstarch binding. Appl. Environ. Microbiol. 66: 3350-3356. https://doi.org/10.1128/AEM.66.8.3350-3356.2000
- Rostagno, M. A., A. Villares, E. Guillamon, A. Garcia-Lafuente, and J. A. Martinez. 2009. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 1216: 2-29. https://doi.org/10.1016/j.chroma.2008.11.035
- Shibata, K., D. M. Flores, G. Kobayashi, and K. Sonomotoa. 2007. Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microb. Technol. 41: 149-155. https://doi.org/10.1016/j.enzmictec.2006.12.020
- Shin, Z. I., R. Yu, S. A. Park, D. K. Chung, C. W. Ahn, H. S. Nam, et al. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. Agric. Food Chem. 49: 3004-3009. https://doi.org/10.1021/jf001135r
- Solms, J. 1969. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17: 686-688. https://doi.org/10.1021/jf60164a016
- Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
- Yang, H. J. and S. Park, V. Pak, K. R. Chung, and D. Y. Kwon. 2011. Fermented soybean products and their bioactive compounds, pp 21-49. H. El-Shemy (ed.). Soybean and Health, InTech.
Cited by
- Bacterial Community Migration in the Ripening of Doenjang, a Traditional Korean Fermented Soybean Food vol.24, pp.5, 2014, https://doi.org/10.4014/jmb.1401.01009
- Metabolite Profiling of Red and White Pitayas (Hylocereus polyrhizus and Hylocereus undatus) for Comparing Betalain Biosynthesis and Antioxidant Activity vol.62, pp.34, 2012, https://doi.org/10.1021/jf5020704
- Hypolipidemic and antiinflammation activities of fermented soybean fibers from meju in C57BL/6 J mice vol.28, pp.9, 2012, https://doi.org/10.1002/ptr.5134
- Unraveling the Functions of the Macroalgal Microbiome vol.6, pp.None, 2012, https://doi.org/10.3389/fmicb.2015.01488
- Comparison of Traditional and Commercial Vinegars Based on Metabolite Profiling and Antioxidant Activity vol.25, pp.2, 2012, https://doi.org/10.4014/jmb.1408.08021
- Spectroscopic determination of metabolic and mineral changes of soya-chunk mediated by Aspergillus sojae vol.170, pp.None, 2012, https://doi.org/10.1016/j.foodchem.2014.08.029
- Metabolic Effects of the pksCT Gene on Monascus aurantiacus Li As3.4384 Using Gas Chromatography–Time-of-Flight Mass Spectrometry-Based Metabolomics vol.64, pp.7, 2012, https://doi.org/10.1021/acs.jafc.5b06082
- Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions vol.211, pp.None, 2012, https://doi.org/10.1016/j.foodchem.2016.05.055
- Correlation of Volatile Compounds and Sensory Attributes of Chinese Traditional Sweet Fermented Flour Pastes Using Hierarchical Cluster Analysis and Partial Least Squares-Discriminant Analysis vol.2017, pp.None, 2012, https://doi.org/10.1155/2017/3213492
- Comparison of physicochemical properties and antioxidant activities of fermented soybean-based red pepper paste, Gochujang, prepared with five different red pepper (Capsicum annuum L.) varieties vol.55, pp.2, 2012, https://doi.org/10.1007/s13197-017-2992-y
- Comprehensive Metabolite Profiling and Microbial Communities of Doenjang (Fermented Soy Paste) and Ganjang (Fermented Soy Sauce): A Comparative Study vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030641
- Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp. vol.31, pp.3, 2012, https://doi.org/10.4014/jmb.2012.12051
- Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review vol.56, pp.4, 2021, https://doi.org/10.1111/ijfs.14794