DOI QR코드

DOI QR Code

삼상슬러리 기포탑에서 액상의 표면장력이 열전달 계수에 미치는 영향

Effects of Liquid Surface Tension on the Heat Transfer Coefficient in a Three-Phase Slurry Bubble Column

  • 임호 (충남대학교 화학공학과) ;
  • 임대호 (충남대학교 화학공학과) ;
  • 진해룡 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과) ;
  • 정헌 (한국에너지기술연구원)
  • Lim, Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Lim, Dae Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Jin, Hae-Ryong (Department of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National University) ;
  • Jung, Heon (Korea Institute of Energy Research)
  • 투고 : 2011.09.28
  • 심사 : 2011.11.29
  • 발행 : 2012.06.01

초록

산업현장에서 자주 접하는 액상의 물성인 표면장력이 상대적으로 작은 액상으로 구성된 삼상슬러리 기포탑에서 총괄 열전달 특성을 고찰하였다. 기포탑 내부의 열전달 현상은 기포탑 내부의 수직 열원과 기포탑 간의 열전달계를 구성하여 고찰하였으며 열전달 계수는 정상상태에서 열원표면의 온도와 기포탑 내부의 평균 온도의 차를 측정하여 결정하였다. 기체유속($U_G$), 슬러리 상에 포함된 고체입자의 분율($C_S$) 그리고 연속 액상의 표면장력(${\sigma}_L$)이 기포탑 내부의 총괄 열전달 계수(h)에 미치는 영향을 규명하였다. 기포탑 내부 열원 표면과 기포탑 벌크영역 간의 온도차는 시간의 변화에 따른 온도차 요동을 측정하여 그 평균값으로 결정하였다. 기포탑 내부 열원표면과 기포탑 벌크 영역 간의 온도차 요동은 연속 액상의 표면장력이 감소할수록 진폭이 감소하였으며 온도차의 평균값도 감소하였다. 내부 수직 열원과 기포탑 간의 총괄 열전달 계수는 기체의 유속과 슬러리 상에 포함된 고체입자의 분율이 증가함에 따라 증가하였으며 연속 액상의 표면장력이 증가함에 따라 감소하였다. 표면장력이 물보다 작은 연속 액상의 기포탑에서 측정된 총괄 열전달 계수는 본 연구의 범위 내에서 실험변수와 무차원군의 상관식으로 나타낼 수 있었다.

Characteristics of overall heat transfer were investigated in a three-phase slurry bubble column with relatively low surface tension media, which has been frequently encountered in the fields of industry. The heat transfer phenomena was examined in the system which was composed of a coaxial vertical heater and a proper of bubble column. The heat transfer coefficient was estimated from the measured mean value of temperature difference between the heater surface and the column proper at the steady state condition. Effects of gas velocity ($U_G$), solid fraction in the slurry phase ($C_S$) and surface tension (${\sigma}_L$) of continuous liquid media on the overall heat transfer coefficient (h) in the bubble column were determined. The mean value of temperature difference was estimated from the data of temperature difference fluctuations with a variation of time. The amplitude and mean value of temperature difference fluctuations with respect to the elasped time appeared to decrease with decreasing the surface tension of liquid phase. The overall heat transfer coefficient between the immersed heated and the bubble column increased with an increase in the gas velocity or solid fraction in the slurry phase, but it decreased with an increase in the surface tension of continuous liquid media. The overall heat coefficient in the slurry bubble column with relatively low surface tension media was well correlated in term of operating variables and dimensionless groups within this experimental conditions.

키워드

참고문헌

  1. Deckwer, W.-D., Bubble Column Reactors, John Wiley and sons., NY. (1992).
  2. Krishna, R. and Sie, S. T., "Design and scale-up of the Fisher-Trapsch Bubble Column Slurry Reactor," Fuel Process. Technol., 64, 73-105(2000). https://doi.org/10.1016/S0378-3820(99)00128-9
  3. Shin, I. S., Son, S. M., Lim, D. H., Kang, Y., Jung, H. and Lee, H. T., "Multiple Effects of Operating Variables on Heat Transfer in Three-phase Slurry Bubble Columns," Korean J. Chem. Eng., 27, 1015-1020(2010). https://doi.org/10.1007/s11814-010-0155-1
  4. Maretto, C. and Krishna, R., "Modeling of a Bubble Column Slurry Reactor for Fischer-Tropsch Synthesis," Catal. Today, 52, 279-289(1999). https://doi.org/10.1016/S0920-5861(99)00082-6
  5. Krishna, R., de Swart, J. W. A., Ellenberger, J., Martina, G. B. and Maretto, C., "Gas Holdup in Slurry Bubble Columns: Effects of Column Diameter and Slurry Concentration," AIChE J., 43, 311-316(1997). https://doi.org/10.1002/aic.690430204
  6. Behkish, A., Lemoine, R., Sehabiague, L., Oukaci, R. and Morsi, B. I., "Gas Holdup and Bubble size Behavior in a Large-Scale Slurry Bubble Column Reactor operating with an Organic Liquid under Elevated Pressures and Temperatures," Chem. Eng. J., 128, 69-84(2007). https://doi.org/10.1016/j.cej.2006.10.016
  7. Seo, M. J., Lim, D. H., Jin, H. R., Kang, Y., Jung, H. and Lee, H. T., "Analysis of Hydrodynamic Similarity of Pressurized Three-Phase Slurry Bubbles for its Design and Scale-up," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47, 720-726(2009).
  8. Seo, M. J., Lim, D. H., Shin, I. S., Son, S. M. and Kang, Y., "Mass Transfer Characteristics in Pressurized Three-phase Slurry Bubble Columns with Variation of Column Diameter," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47, 459-464(2009).
  9. Saxena, S. C., Rao, N. S. and Saxena, A. C., "Heat Transfer from a Cylindrical Probe Immersed in a Three-Phase Slurry Bubble Column," Chem. Eng. J., 44, 141-156(1990). https://doi.org/10.1016/0300-9467(90)80071-J
  10. Li, H. and Prakash, A., "Heat Transfer and Hydrodynamics in a Three-Phase Slurry Bubble Column," I&EC Research, 38, 4688-4694(1997).
  11. Deckwer, W. D., Louisi, T., Zaldi, A. and Fan, L. S., "Heat Transfer Characteristics in Slurry Bubble Column at Elevated Pressures and Temperatures," I&EC Process Des. Dev., 19, 699-708(1980). https://doi.org/10.1021/i260076a032
  12. Yang, G. Q., Luo, X., Law, R. and Fan, L. S., "Heat Transfer Characteristics in Slurry Bubble Columns at Elevated Pressures and Temperatures," I&EC Research, 39, 2568-2577(2000).
  13. Jang, J. H., Seo, M. J., Lim, D.H., Kang, Y., Jung, H. and Lee, H. T., "Heat Transfer Model and Energy Dissipation Rate in Bubble Columns with Continuos Operation," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47, 587-592(2009).
  14. Kang, Y., Lee, K. I., Shin, I. S., Son, S. M., Kim, S. D. and Jung, H., "Characteristic of Hydrodynamics, Heat and Mass Transfer in Three-phase Inverse Fluidized beds," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46, 451-464(2008).
  15. Son, S. M., Lee, K. I., Kang, S. H., Kang. Y. and Kim, S. D., "Heat Transfer Coefficient in Viscous Three-phase Inverse Fludized Beds," AIChE J., 53, 3011-3016(2007). https://doi.org/10.1002/aic.11310
  16. Son, S. M., Shin, I, S., Kang, Y., Cho, Y. J. and Yang, H, C., "Characteristics of Heat Transfer in Three-phase Swirling Fluidized Beds," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46, 56-62(2008).
  17. Cho, Y. J., Woo, K. J., Kang, Y. and Kim, S. D., "Dynamic Characteristics of Heat Transfer Coefficient in Pressurized Bubble Columns with Viscous Liquid Medium," Chem. Eng. Processing, 41, 699-706(2002). https://doi.org/10.1016/S0255-2701(02)00002-8
  18. Lim, D. H., Jang, J. H., Kang, Y. and Jun, K. W., "Axial and Radial Distributions of Bubble Holdup in a slurry Bubble Column with Pilot plant scale," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 49, 200-205(2011). https://doi.org/10.9713/kcer.2011.49.2.200
  19. Lim, D. H., Jang, J. H., Jin, H. R., Kang, Y., Jung, H., Kim, S. D. and Kim, W. H., "Heat Transfer in Three-phase (G/L/S) Circulating Fluidazed Beds with Low Surface Tention Media," Chem. Eng. Sci., 66, 3145-3151(2011). https://doi.org/10.1016/j.ces.2011.02.061
  20. Shin, K. S., Song, P. S., Lee, C. G., Kang, S. H., Kang, Y., Kim, S. D. and Kim. S. J., "Heat Transfer Coefficient in Viscous Liquid-Solid Circulating Fulidized Beds," AIChE J., 51, 671-677(2005). https://doi.org/10.1002/aic.10291
  21. Kang, S. H., Son, S. H., Kim, U. Y., Kang, Y., Cho, Y. J. and Kang, H. K., "Heat Transfer Resistances in Three-phase Circulating Fludized Beds," J. Ind. Eng. Chem., 13, 33-39(2007).