DOI QR코드

DOI QR Code

실험실규모 고온고압건식탈황공정의 수력학적 특성 및 탈황온도에 따른 아연계 탈황제의 반응특성 연구

A Study of Hydrodynamics and Reaction Characteristics in Relation to the Desulfurization Temperatures of Zn-Based Solid Sorbent in the Lab-scale High Pressure and High Temperature Desulfurization Process

  • 경대현 (한국에너지기술연구원 온실가스연구단) ;
  • 김재영 (대전대학교 환경공학과) ;
  • 조성호 (한국에너지기술연구원 온실가스연구단) ;
  • 박영철 (한국에너지기술연구원 온실가스연구단) ;
  • 문종호 (한국에너지기술연구원 온실가스연구단) ;
  • 이창근 (한국에너지기술연구원 온실가스연구단) ;
  • 백점인 (한전전력공사 전력연구원)
  • Kyung, Dae-Hyun (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Kim, Jae-Young (Department of Environmental Engineering, Daejeon University) ;
  • Jo, Sung-Ho (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Young Cheol (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Moon, Jong-Ho (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yi, Chang-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Baek, Jeom-In (Korea Electric Power Research Institute)
  • 투고 : 2011.09.23
  • 심사 : 2011.10.30
  • 발행 : 2012.06.01

초록

본 연구에서는 고온고압 건식탈황장치를 이용하여 고체순환량과 탈황반응기 내의 공극률에 대한 수력학적특성을 파악하고, 아연계 탈황제의 고온고압 조건에서 탈황반응온도에 대한 반응특성 및 연속운전을 통한 탈황 효율을 분석하였다. 실험에 사용된 고온고압건식탈황장치는 고속유동층 형태의 탈황반응기(내경: 0.015 m, 높이: 6.2 m), 기포유동층 형태의 재생반응기(내경: 0.053 m, 높이: 1.6 m), 가스의 역흐름을 방지하는 loop-seal, 두 반응기 후단에 압력컨트롤밸브로 구성되어있다. 수력학 특성으로는 고체순환밸브 개구비, 탈황반응기 가스 유속, 탈황반응기 온도 변화에 따른 고체순환량과 각 조건에서의 고속유동층 형태의 탈황반응기 높이에 따른 공극률 분포를 알아보았다. 고체순환량은 동일한 유속조건, 동일한 고체순환밸브 개구비에서 탈황반응기 온도가 상온일 때보다 $300^{\circ}C$$550^{\circ}C$일 때 감소하였으며 $300^{\circ}C$$550^{\circ}C$ 조건에서는 큰 차이가 없었다. 탈황반응기내의 공극률은 고체순환밸브 개구비가 10~20%로 고체순환량이 적은 경우 고속유동층 형태의 공극률 분포를 보이고, 30~40%로 고체순환량이 많아지는 경우 탈황반응기 하부에서 turbulent 형태의 공극률의 분포를 나타냈다. 아연계 탈황제의 탈황반응온도에 따른 반응특성은 시스템 압력 20 atm, 연속 반응 조건에서 탈황 온도를 변화시키면서 살펴보았다. 일정한 고체순환 조건에서 탈황온도 $450^{\circ}C$ 이하에서 탈황 효율 저하가 시작되는 것을 확인하였으며, 높은 탈황 효율을 유지시키기 위하여 10시간 연속운전에서는 탈황 반응 온도를 $500^{\circ}C$로 설정하여 실험하였다. 실험 결과, 10시간 연속운전을 통해, 유입 $H_2S$ 농도 5,000 ppmv 조건에서 탈황 반응기 후단 $H_2S$ 농도는 UV분석기(Radas2)와 검지관(GASTEC)의 검출한계인 1 ppmv 이하를 유지하여 $H_2S$ 제거 효율 99.99% 이상을 달성하였다.

In this study, hydrodynamics such as solid circulation rate and voidage in the desulfurizer and the reaction characteristics of Zn-based solid sorbents were investigated using lab-scale high pressure and high temperature desulfurization process. The continuous HGD (Hot Gas Desulfurization) process consist of a fast fluidized bed type desulfurizer (6.2 m tall pipe of 0.015 m i.d), a bubbling fluidized bed type regenerator (1.6 m tall bed of 0.053 m i.d), a loop-seal and the pressure control valves. The solid circulation rate was measured by varying the slide-gate opening positions, the gas velocities and temperatures of the desulfurizer and the voidage in the desulfurizer was derived by the same way. At the same gas velocities and the same opening positions of the slide gate, the solid circulation rate, which was similar at the temperature of $300^{\circ}C$ and $550^{\circ}C$, was low at those temperatures compared with a room temperature. The voidage in the desulfurizer showed a fast fluidized bed type when the opening positions of the slide gate were 10~20% while that showed a turbulent fluidized bed type when those of slide gate were 30~40%. The reaction characteristics of Zn-based solid sorbent were investigated by different desulfurization temperatures at 20 atm in the continuous operation. The $H_2S$ removal efficiency tended to decrease below the desulfurization temperature of $450^{\circ}C$. Thus, the 10 hour continuous operation has been performed at the desulfurization temperature of $500^{\circ}C$ in order to maintain the high $H_2S$ removal efficiency. During 10 hour continuous operation, the $H_2S$ removal efficiency was above 99.99% because the $H_2S$ concentration after desulfurization was not detected at the inlet $H_2S$ concentration of 5,000 ppmv condition using UV analyzers (Radas2) and the detector tube (GASTEC) which lower detection limit is 1 ppmv.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. Lee, T. J., Park, N. K., Kim, J. H., Kim, K. S., Park, Y. W. and Yi, C. K., "Removal of $H_2S$ by Zinc-Based Sorbents from High Temperature Coal-Derived Gases," HWAHAK KONGHAK, 34(4), 435-442(1996).
  2. Kang, S. H., Rhee, Y. W., Kang, Y., Han, K. H, Lee, C. K. and Jin, G. T., "A Study of Desulfurization Reaction using Zinc Titanate at High-Temperature," HWAHAK KONGHAK, 35(5), 642-648(1997).
  3. Na, J. I., Park, S. J, Wi, Y. H., Yi, C. K. and Lee, G. J., "Sulfidation Reactivity of Zinc Titanate Sorbent and Reaction Kinetics by Unreacted Core Model," HWAHAK KONGHAK, 37(4), 499-503(1999).
  4. Yi, C. K., Park, J. Y., Cho, S. H., Jin, G. T. and Son, J. E., "Reaction Characteristics of Zinc Titanate Sorbent for the Design of a Hot Gas Desulfurization Fluidized Reactor," HWAHAK KONGHAK, 37(1), 81-86(1999).
  5. Gupta, R., Turk, B., Lesemann, M., Schlather, J. and Denton, D., "Status of RTI/Eastman Warm Gas Clean-up Technology and Commercialization Plans," Gasification Technologies Conference, October, Washington, DC(2008).
  6. R. Gupta et al., RTI/Eastman warm syngas clean-up technology: Intergration with carbon capture, Gasification Technologies Conference, October, 2009.
  7. Jo, S. H., Lee, B. H., Lee, J. B., Ryu, C. K., Jin, G. T. and Yi, C. K., "Multi-cyclic Test of an Air-Regenerated Sorbent in a Pressurized Fluidized Reactor for Hot Gas Desulfurization," HWAHAK KONGHAK, 40(2), 231-236(2002).
  8. Park, E. H., Hong, S. S., Jo, S. H., Yi, C. K. and Jin, G. T., "Critical Velocity for the Dense-Conveying in a Horizontal Pipe of a Circulation Process," HWAHAK KONGHAK, 33(3), 333-339(2001).
  9. William, L. L. and Yi, C. K., "Dynamic Modeling and Control of A Hot-Gas Desulfurization Process with a Transport Desulfurizer," Ind. Eng. Chem. Res., 40(4), 1157-1167(2001). https://doi.org/10.1021/ie000472m
  10. Choi, J. H., Moon, Y. S., Ryu, H. J., Yi, C. K., Son, J. E. and Kim, S. D., "Modeling the Desulfurization Characteristics of a Continuous Bubbling-Fluidized-Bed Hot-Gas Cleanup System," Ind. Eng. Chem. Res., 43(18), 5770-5775(2004). https://doi.org/10.1021/ie040113h
  11. Cho, S. H., Lee, B. H., Lee, J. B., Ryu, C. K. and Jin, G. T., "Multi-cyclic Test of a Air-Regenerated Sorbent in a Pressurized Fluidized Reactor for Hot Gas Desulfurization," HWAHAK KONGHAK, 40(2), 231-236(2002).
  12. Yi, C. K., Cho, S. H., Kwan, H. S., Kim, K. B., Chae, H. K., Jin, G. T. and Son, J. E., "Continuos Operation of Zinc-Titanate Sorbent for 100 Hours in a Fluidized Hot Gas Desulfurization Process for IGCC," HWAHAK KONGHAK, 40(2), 246-251(2002).
  13. Yi, C. K. and Son, J. E., "Comparison of Two Different Hot-gas Desulfurization Powder Processes : Transport Reactor and Bubbling Fluidized Bed," Adv. Powder Technol., 21(2), 119-124(2010). https://doi.org/10.1016/j.apt.2009.12.004
  14. Yi, C. K., Bae, D. H., Shun, D. W., Jin, G. T. and Son, J. E., "Pressure Balance Curves in KIER Solid Circulation Fluidized Process with Two Looperals," HWAHAK KONGHAK, 37(4), 604-608(1999).
  15. Kuni, D. and Levenspiel, O., Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, 200(1991).

피인용 문헌

  1. Cleanup vol.25, pp.5, 2014, https://doi.org/10.7316/KHNES.2014.25.5.482
  2. 탈황, 재생공정 및 흡착속도 추정을 포함한 디젤용 탈황반응기 설계 vol.55, pp.6, 2017, https://doi.org/10.9713/kcer.2017.55.6.874