DOI QR코드

DOI QR Code

Large-Displacement Electromagnetic Actuators with the Meander Springs Partially Exposed to Magnetic Field

부분적으로 자기장에 노출된 굴곡형 스프링을 이용한 대변위 전자기력 구동기

  • Seo, Dae-Geon (NanoSentuating Systems Lab., Dept. of Bio and Brain Engineering, KAIST) ;
  • Han, Won (NanoSentuating Systems Lab., Dept. of Bio and Brain Engineering, KAIST) ;
  • Cho, Young-Ho (NanoSentuating Systems Lab., Dept. of Bio and Brain Engineering, KAIST)
  • 서대건 (한국과학기술원 바이오및뇌공학과, 나노감응시스템연구실) ;
  • 한원 (한국과학기술원 바이오및뇌공학과, 나노감응시스템연구실) ;
  • 조영호 (한국과학기술원 바이오및뇌공학과, 나노감응시스템연구실)
  • Received : 2011.07.08
  • Accepted : 2012.03.01
  • Published : 2012.05.01

Abstract

We discuss the design, fabrication, and testing of a large-displacement electromagnetic actuator with the meander springs partially exposed to a magnetic field. We compared two prototypes: a prototype (F) of the conventional actuator with the meander springs fully exposed to a magnetic field and a prototype (P) of the proposed actuator with the meander springs partially exposed to a magnetic field. For a 5 Hz square input current varying from 10.40 mA, P showed an increase of $16.9{\pm}1.2%$ in the amplitude, which was greater than the increase in the case of F. Thus, we experimentally demonstrated the large-displacement actuation performance of the proposed actuator in a small volume and at low currents (below 40 mA). The proposed electromagnetic actuator can be used for low-power and large-displacement manipulation of optical switches and optical choppers.

본 논문에서는 대변위 구동이 가능한 구동기의 설계를 위해 기존의 전자기력 구동기에 비해 낮은 스프링 상수를 갖는 굴곡형 스프링을 적용하고, 변위가 발생하는 방향으로만 로렌츠힘이 생기도록 굴곡형 스프링의 일부분만 자기장에 노출시키는 구동기를 제안한다. 굴곡형 스프링의 양쪽 부재가 자기장에 노출된 구조(prototype F)와 굴곡형 스프링의 한쪽 부재만을 자기장에 노출시킨 구조(prototype P)를 설계하고, 제작하여 실험한 결과 prototype P 가 굴곡형 스프링의 양쪽 부재를 자기장에 노출시킨 prototype F의 구동성능에 비해 $16.9{\pm}1.2%$의 진폭 증가를 보임을 실험적으로 검증하였다. 제안된 구동기는 제한된 면적 내에서 작은 전류(<50mA)와 작은 자기장(<0.3T)으로 대변위 구동을 가능케 하여 광 스위치 또는 광 단속기 등에 응용이 가능하다.

Keywords

References

  1. Han, J. S., Ko, J. S., Kim, Y. T. and Kwak, B. M., 2002, "Parametric Study and Optimization of a Micro-Optical Switch with a Laterally Driven Electromagnetic Microactuator," J. Micromech. Microeng., Vol. 12, No. 2, pp. 939-947. https://doi.org/10.1088/0960-1317/12/6/326
  2. Li, L. and Uttamchandani, D., 2004, "Design and Evaluation of a MEMS Optical Chopper for Fibre Optic Applications," IEE Proc.-Sci. Meas. Technol., Vol. 151, No. 2, pp. 77-84.
  3. Park, S. and Hah, D., 2008, "Pre-Shaped Buckled-Beam Actuators: Theory and Experiments," Sensor and Actuators A, Vol. 148, pp. 186-192. https://doi.org/10.1016/j.sna.2008.07.009
  4. Ko, J. S., Lee, M. L., Lee, D. -S., Choi, C. A. and Kim, Y. T., 2002, "Development and Application of a Laterally Driven Electromagnetic Microactuator," Applied Physics Letters, Vol. 81, No. 3, pp. 547-549. https://doi.org/10.1063/1.1494462
  5. Cao, A., Kim, J. and Lin, L., 2007, "Bi-Directional Electrothermal Electromagnetic Actuators," J. Micromech. Microeng., Vol. 17, No. 5, pp. 975-982. https://doi.org/10.1088/0960-1317/17/5/018
  6. Holzer, R., Shimoyama, I. and Miura, H., 1995, "Lorentz Force Actuation of Flexible Thin-Film Aluminum Microstructures," IEEE, pp. 156-161.
  7. Lishchynska, M., Cordero, N., Slattery, O. and O'Mahony, C., 2006, "Spring Constant Models for Analysis and Design of MEMS Plates on Straight or Meander Tethers," Sensor Letters, Vol. 4, No. 2, pp. 200-205. https://doi.org/10.1166/sl.2006.011
  8. Brauer, J. R., 2006, Magnetic Actuators and Sensors, John Wiley & Sons, Inc.