DOI QR코드

DOI QR Code

A Simple Capacitive Sensor Array Based on a Metal-Insulator-Metal Structure

  • Lee, Hee-Ho (School of Electronics Engineering, Kyungpook National University) ;
  • Choi, Jin-Hyeon (Department of Sensor and Display Engineering, Kyungpook National University) ;
  • Ahn, Jung-Il (Department of Sensor and Display Engineering, Kyungpook National University) ;
  • Kim, Chang-Soo (Department of Electrical & Computer Engineering and Department of Biological Sciences, Missouri University of Science and Technology) ;
  • Shin, Jang-Kyoo (School of Electronics Engineering, Kyungpook National University)
  • Received : 2012.02.03
  • Accepted : 2012.02.15
  • Published : 2012.03.31

Abstract

A simple array of metal-insulator-metal capacitive elements was proposed for a potential application in humidity sensing platforms. We fabricated meso-scale sensors with different sizes(large-size: $2.7{\times}2.7mm^2$ ; mid-size: $1.5{\times}1.5mm^2$ ; small-size: $0.7{\times}0.7mm^2$) and characterized the performance of each design. Polyimide films were utilized as a humidity-sensitive layer. Capacitance changes of the polyimide layer were measured with respect to water absorption. The device showed sensitivity in the full range of relative humidity (RH) with excellent linearity(correlation coefficient > 0.994). This array structure exhibits unique advantages including easy fabrication process, high batch productivity, and high structural compatibility with various substrate materials. It is anticipated that this device structure will be potentially useful in unique applications including mapping spatial humidity variations over a meso-scale area and implementing flexible humidity sensing element arrays.

Keywords

References

  1. D. D. Denton, C. N. Ho, and S. G. He, "A solid-state relative humidity measurement system", IEEE Trans. Instrum. Meas., vol. 39, no. 3, pp. 508-511, 1990. https://doi.org/10.1109/19.106282
  2. T. Boltshauser, L. Chandran, H. Baltes, F. Bose, and D. Steiner, "Humidity sensing properties and electrical permittivity of new photosensitive polyimides", Sens. Actuators B, vol. 5, pp. 161-164, 1991. https://doi.org/10.1016/0925-4005(91)80238-F
  3. T. Boltshauser, C. A. Leme, and H. Blates, "High sensitivity CMOS humidity sensors with on-chip absolute capacitance measurement system", Sens. Actuators B, vol. 15, pp. 75-90, 1993. https://doi.org/10.1016/0925-4005(93)85030-E
  4. P. R. Story, D. W. Galipeau, and R. D. Milehan, "A study of low-cost sensors for measuring low relative humidity", Sens. Actuators B, vol. 24, pp. 681-685, 1995.
  5. L. Gu, Q.-A. Huang, and M. Qin, "A novel capacitive type humidity sensor using CMOS fabrication technology", Sens. Actuators B, vol. 99, pp.491-498. https://doi.org/10.1016/j.snb.2003.12.060
  6. C. Labille and C. Pellet, "Interdigitated humidity sensors for a portable clinical microsystem", IEEE Trans. Biomed. Eng., vol. 49, pp. 1162-1167, 2002. https://doi.org/10.1109/TBME.2002.802052
  7. J. Das, S. Dey, S. M. Hossain, Z. M. C. Rittersma, and H. Saha, "A hygrometer comprising a porous silicon humidity sensor with phase-detection electronics", IEEE Sens. J., vol. 3, no. 4, pp. 414-420, 2003. https://doi.org/10.1109/JSEN.2003.816261
  8. M. Bruzzi, S. Miglio, M. Scaringella, G. Bongiorno, P. Piseri, A. Podesta, and P. Milani, "First study of humidity sensors based on nanostructured carbon films produced by supersonic cluster beam deposition", Sens. Actuators B, vol. 100, pp. 173-176, 2004. https://doi.org/10.1016/j.snb.2003.12.046
  9. R. V. Dabhade, D. S. Bodas, and S. A. Gangal, "Plasma-treated polymer as humidity sensing materiala feasibility study", Sens. Actuators B, vol. 98, pp.37- 40, 2004. https://doi.org/10.1016/j.snb.2003.08.020
  10. Y. Sakai, Y. Sadaoka, and H. Fukumoto, "Humidity sensitive and water resistive polymeric materials", Sens. Actuators, vol. 13, pp. 243-250, 1988. https://doi.org/10.1016/0250-6874(88)85004-2
  11. Y. Sakai, Y. Sadaoka, M. Matsuguchi, and H. Sakai, "Humidity sensor durable at high humidity using simultaneously crosslinked and quaternized poly(chloromethyl styrene)", Sens. Actuators B, vol. 24, pp. 689-691, 1995.
  12. Y. Sakai, Y. Sadaoka, and M. Matsuguchi, "Humidity sensors based on polymer thin films", Sens. Actuators B, vol. 35, pp. 85-90, 1996. https://doi.org/10.1016/S0925-4005(96)02019-9
  13. J. Ying, C. Wan, and P. He, "Sol-gel processed $TiO_2-K_2O-LiZnVO_4$ ceramic thin films as innovative humidity sensors", Sens. Actuators B, vol. 62, pp. 165- 170, 2000. https://doi.org/10.1016/S0925-4005(99)00364-0
  14. S. Pokhrel and K. S. Nagaraja, "Electrical and humidity sensing properties of molybdenum(VI) oxide and tungsten(VI) oxide composites", Phys. Stat. Sol. A, vol. 198, pp. 343-349, 2003. https://doi.org/10.1002/pssa.200306606
  15. K. I. Arshak and K. Twomey, "Investigation into a novel humidity sensor operating at room temperature", Microelectronics J., vol. 33, pp. 231- 220, 2002.
  16. J. Wang, Q. Lin, R. Zhou, and B. Xu, "Humidity sensors based on composite material of nano-$BaTiO_3$ and polymer RMX", Sens. Actuators B, vol. 81, pp. 248-253, 2002. https://doi.org/10.1016/S0925-4005(01)00959-5
  17. C.-Y. Lee and G.-B. Lee, "Humidity sensors: A review", Sens. Lett., vol. 3, pp. 1-15, 2005. https://doi.org/10.1166/sl.2005.001
  18. Z. M. Rittersma, "Recent achievements in miniaturised humidity sensors-a review of transduction techniques", Sens. Actuators A, vol. 96, pp. 196-210, 2002. https://doi.org/10.1016/S0924-4247(01)00788-9
  19. Z. Chen and C. Lu, "Humidity sensors: A review of materials and mechanisms", Sens. Lett., vol. 3, pp. 274-295, 2005. https://doi.org/10.1166/sl.2005.045
  20. R. Fenner and E. Zdankiewicz, "Micromachined water vapor sensors: a review of sensing technologies", IEEE Sens. J., vol. 1, pp. 309-317, 2001. https://doi.org/10.1109/7361.983470
  21. J. Liu, M. Agarwal, K. Varahramyan, E. S. Berney IV, and W. D. Hodo, "Polymer-based microsensor for soil moisture measurement", Sens. Actuators B, vol. 129, pp. 599-604, 2008. https://doi.org/10.1016/j.snb.2007.09.017
  22. K. W. Misevich, "Capacitive humidity transducer", IEEE Trans. Ind. Electron. Contr. Instrum,. vol. 16, pp.6-12, 1969. https://doi.org/10.1109/TIECI.1969.229859
  23. H. Shibata and M. Ito, M. Asakura, and K. Watanabe, "A digital hygrometer uisng a polyimide film relative humidity sensor", IEEE Trans. Instrum. Meas., vol. 45, pp. 564-569, 1990. https://doi.org/10.1109/19.492788
  24. N. Lazarus, S. S. Bedair, C.-C. Lo, and G.K. Fedder, "CMOS-MEMS capacitive humidity sensor", J. Microelectromech. Syst., vol. 19, pp. 183-191, 2010. https://doi.org/10.1109/JMEMS.2009.2036584
  25. P. J. Schubert and J. H. Nevin, "A polyimide-based capacitive humidity sensor", IEEE Trans. Electron Devices, vol. 32, pp. 1220-1223, 1985. https://doi.org/10.1109/T-ED.1985.22104
  26. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Pergamon, New York, 1984.
  27. K. Sager, A. Schroth, and G. Gerlach, "Humiditydependent mechanical properties of polyimide films and their use for IC-comtatible humidity sensors", Proc. Transducers, Stockholm, Sweden, pp. 736-739, 1995.