References
- Chen, C., Seth, A. K. and Aplin, A. E. (2006) Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol. Cancer Res. 4, 695-707. https://doi.org/10.1158/1541-7786.MCR-06-0182
- Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. and Ting, J. P. (2006) DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA. 103, 15091-15096. https://doi.org/10.1073/pnas.0607260103
- Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. and Diehl, J. A. (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell Biol. 24, 8477-8486. https://doi.org/10.1128/MCB.24.19.8477-8486.2004
- Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J. and Diehl, J. A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell Biol. 23, 7198-7209. https://doi.org/10.1128/MCB.23.20.7198-7209.2003
- Furukawa, M., He, Y. J., Borchers, C. and Xiong, Y. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol. 5, 1001-1007. https://doi.org/10.1038/ncb1056
- Furukawa, M. and Xiong, Y. (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell Biol. 25, 162-171. https://doi.org/10.1128/MCB.25.1.162-171.2005
- Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell. 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell. 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
- He, C. H., Gong, P., Hu, B., Stewart, D., Choi, M. E., Choi, A. M. and Alam, J. (2001) Identifi cation of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase- 1 gene regulation. J. Biol. Chem. 276, 20858-20865. https://doi.org/10.1074/jbc.M101198200
- Higa, L. A. and Zhang, H. (2007) Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell. Div. 2, 5. https://doi.org/10.1186/1747-1028-2-5
- Huang, H. C., Nguyen, T. and Pickett, C. B. (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA. 97, 12475-12480. https://doi.org/10.1073/pnas.220418997
- Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
- Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86. https://doi.org/10.1101/gad.13.1.76
- Jain, A. K. and Jaiswal, A. K. (2006) Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J. Biol. Chem. 281, 12132-12142. https://doi.org/10.1074/jbc.M511198200
- Jeong, W. S., Keum, Y. S., Chen, C., Jain, M. R., Shen, G., Kim, J. H., Li, W. and Kong, A. N. (2005) Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J. Biochem. Mol. Biol. 38, 167-176. https://doi.org/10.5483/BMBRep.2005.38.2.167
- Kaelin, W. G. Jr. (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer. 2, 673-682. https://doi.org/10.1038/nrc885
- Kang, M. I., Kobayashi, A., Wakabayashi, N., Kim, S. G. and Yamamoto, M. (2004) Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc. Natl. Acad. Sci. USA. 101, 2046-2051. https://doi.org/10.1073/pnas.0308347100
- Karapetian, R. N., Evstafi eva, A. G., Abaeva, I. S., Chichkova, N. V., Filonov, G. S., Rubtsov, Y. P., Sukhacheva, E. A., Melnikov, S. V., Schneider, U., Wanker, E. E. and Vartapetian, A. B. (2005) Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes. Mol. Cell Biol. 25, 1089-1099. https://doi.org/10.1128/MCB.25.3.1089-1099.2005
- Kensler, T. W., Wakabayashi, N. and Biswal, S. (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
- Keum, Y. S., Jeong, W. S. and Kong, A. N. (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. 555, 191-202. https://doi.org/10.1016/j.mrfmmm.2004.05.024
- Kobayashi, M. and Yamamoto, M. (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox. Signal. 7, 385-394. https://doi.org/10.1089/ars.2005.7.385
- Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223.
- Li, W., Jain, M. R., Chen, C., Yue, X., Hebbar, V., Zhou, R. and Kong, A. N. (2005) Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J. Biol. Chem. 280, 28430-28438. https://doi.org/10.1074/jbc.M410601200
- Li, W. and Kong, A. N. (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48, 91-104. https://doi.org/10.1002/mc.20465
- Li, W., Yu, S. W. and Kong, A. N. (2006) Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J. Biol. Chem. 281, 27251-27263. https://doi.org/10.1074/jbc.M602746200
- Lippman, S. M. and Hawk, E. T. (2009) Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Res. 69, 5269-5284. https://doi.org/10.1158/0008-5472.CAN-09-1750
- Lippman, S. M., Klein, E. A., Goodman, P. J., Lucia, M. S., Thompson, I. M., Ford, L. G., Parnes, H. L., Minasian, L. M., Gaziano, J. M., Hartline, J. A., Parsons, J. K., Bearden, J. D. 3rd, Crawford, E. D., Goodman, G. E., Claudio, J., Winquist, E., Cook, E. D., Karp, D. D., Walther, P., Lieber, M. M., Kristal, A. R., Darke, A. K., Arnold, K. B., Ganz, P. A., Santella, R. M., Albanes, D., Taylor, P. R., Probstfi eld, J. L., Jagpal, T. J., Crowley, J. J., Meyskens, F. L. Jr, Baker, L. H. and Coltman, C. A. Jr. (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 301, 39-51. https://doi.org/10.1001/jama.2008.864
- Liu, J., Furukawa, M., Matsumoto, T. and Xiong, Y. (2002) NEDD8 modifi cation of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell. 10, 1511-1518. https://doi.org/10.1016/S1097-2765(02)00783-9
- Lo, S. C, and Hannink, M. (2006) CAND1-mediated substrate adaptor recycling is required for effi cient repression of Nrf2 by Keap1. Mol. Cell Biol. 26, 1235-1244. https://doi.org/10.1128/MCB.26.4.1235-1244.2006
- McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Keap1- dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element- driven gene expression. J. Biol. Chem. 278, 21592-21600. https://doi.org/10.1074/jbc.M300931200
- McMahon, M., Thomas, N., Itoh, K., Yamamoto, M. and Hayes, J. D. (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279, 31556- 31567. https://doi.org/10.1074/jbc.M403061200
- Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J. D. and Yamamoto, M. (2002) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 294, 1-12. https://doi.org/10.1016/S0378-1119(02)00788-6
- Nakayama, K. I. and Nakayama, K. (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer. 6, 369-381. https://doi.org/10.1038/nrc1881
- Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536-4541. https://doi.org/10.1074/jbc.M207293200
- Nioi, P., Nguyen, T., Sherratt, P. J. and Pickett, C. B. (2005) The carboxy- terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell Biol. 25, 10895-10906. https://doi.org/10.1128/MCB.25.24.10895-10906.2005
- Ohtsubo, T., Kamada, S., Mikami, T., Murakami, H. and Tsujimoto, Y. (1999) Identifi cation of NRF2, a member of the NF-E2 family of transcription factors, as a substrate for caspase-3(-like) proteases. Cell Death Differ. 6, 865-872. https://doi.org/10.1038/sj.cdd.4400566
- Omenn, G. S., Goodman, G. E., Thornquist, M. D., Balmes, J., Cullen, M. R., Glass, A., Keogh, J. P., Meyskens, F. L., Valanis, B., Williams, J. H., Barnhart, S. and Hammar, S. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150-1155. https://doi.org/10.1056/NEJM199605023341802
- Petroski, M. D. and Deshaies, R. J. (2005) Function and regulation of cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology 6, 9-20. https://doi.org/10.1038/nrm1547
- Pickart, C. M. (2004) Back to the future with ubiquitin. Cell. 116, 181- 190. https://doi.org/10.1016/S0092-8674(03)01074-2
- Sharpless, N. E. and Depinho, R. A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741-754. https://doi.org/10.1038/nrd2110
- Sumara, I., Maerki, S. and Peter, M. (2008) E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 18, 84-94. https://doi.org/10.1016/j.tcb.2007.12.001
- Sun, J., Hoshino, H., Takaku, K., Nakajima, O., Muto, A., Suzuki, H., Tashiro, S., Takahashi, S., Shibahara, S., Alam, J., Taketo, M. M., Yamamoto, M. and Igarashi, K. (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO. J. 21, 5216-5224. https://doi.org/10.1093/emboj/cdf516
- Sykiotis, G. P. and Bohmann, D. (2010) Stress-activated cap'n'collar transcription factors in aging and human disease. Sci. Signal. 3 (112), re3. https://doi.org/10.1126/scisignal.3112re3
- Tong, K. I., Kobayashi, A., Katsuoka, F. and Yamamoto, M. (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387, 1311-1320.
- Tong, K. I., Padmanabhan, B., Kobayashi, A., Shang, C., Hirotsu, Y., Yokoyama, S. and Yamamoto, M. (2007) Different electrostatic potentials defi ne ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell Biol. 27, 7511-7521. https://doi.org/10.1128/MCB.00753-07
- Vogelstein, B. and Kinzler, K. W. (2004) Cancer genes and the pathways they control. Nat. Med. 10, 789-799. https://doi.org/10.1038/nm1087
- Zhang, D. D. (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789. https://doi.org/10.1080/03602530600971974
- Zhang, D. D. and Hannink, M. (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell Biol. 23, 8137-8151. https://doi.org/10.1128/MCB.23.22.8137-8151.2003
Cited by
- β-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia vol.12, pp.1, 2015, https://doi.org/10.1186/s12974-015-0355-z
- Metabolism and antiproliferative effects of sulforaphane and broccoli sprouts in human intestinal (Caco-2) and hepatic (HepG2) cells vol.14, pp.6, 2015, https://doi.org/10.1007/s11101-015-9422-4
- Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25–35 neurotoxicity vol.304, 2015, https://doi.org/10.1016/j.neuroscience.2015.07.030
- Effect of 7, 8-dihydroxyflavone on the up-regulation of Nrf2-mediated heme oxygenase-1 expression in hamster lung fibroblasts vol.50, pp.6, 2014, https://doi.org/10.1007/s11626-014-9735-4
- 7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1 vol.2013, 2013, https://doi.org/10.1155/2013/863720
- Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia vol.1831, pp.6, 2013, https://doi.org/10.1016/j.bbalip.2013.01.020
- Can nitroxides evoke the Keap1–Nrf2–ARE pathway in skin? vol.77, 2014, https://doi.org/10.1016/j.freeradbiomed.2014.08.021
- Anti-Inflammatory Effect of Ginsenoside Rg5 in Lipopolysaccharide-Stimulated BV2 Microglial Cells vol.14, pp.5, 2013, https://doi.org/10.3390/ijms14059820
- Suppression of Lipopolysaccharide-Induced Neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 Signaling Pathway Modulation vol.65, pp.2, 2017, https://doi.org/10.1021/acs.jafc.6b05147
- Triphlorethol-A from Ecklonia cava Up-Regulates the Oxidant Sensitive 8-Oxoguanine DNA Glycosylase 1 vol.12, pp.11, 2014, https://doi.org/10.3390/md12115357
- Anti-inflammatory Mechanism of Ginseng Saponin Metabolite Rh3 in Lipopolysaccharide-Stimulated Microglia: Critical Role of 5′-Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway vol.63, pp.13, 2015, https://doi.org/10.1021/jf506110y
- Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-2183-z
- Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1 vol.29, pp.4, 2016, https://doi.org/10.1021/acs.chemrestox.6b00016
- The dermato-protective effects of lucidone from Lindera erythrocarpa through the induction of Nrf2-mediated antioxidant genes in UVA-irradiated human skin keratinocytes vol.12, 2015, https://doi.org/10.1016/j.jff.2014.10.019
- Molecular and Chemical Regulation of the Keap1-Nrf2 Signaling Pathway vol.19, pp.7, 2014, https://doi.org/10.3390/molecules190710074
- Ethanol Extract ofCirsium japonicumvar.ussurienseKitamura Exhibits the Activation of Nuclear Factor Erythroid 2-Related Factor 2-dependent Antioxidant Response Element and Protects Human Keratinocyte HaCaT Cells Against Oxidative DNA Damage vol.21, pp.1, 2016, https://doi.org/10.15430/JCP.2016.21.1.66
- Dietary total antioxidant capacity as a tool in health outcomes in middle-aged and older adults: A systematic review 2018, https://doi.org/10.1080/10408398.2016.1230089
- miR-302 Attenuates Amyloid-β-Induced Neurotoxicity through Activation of Akt Signaling vol.50, pp.4, 2016, https://doi.org/10.3233/JAD-150741
- Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways vol.21, pp.5, 2013, https://doi.org/10.4062/biomolther.2013.069
- Lutein acts via multiple antioxidant pathways in the photo-stressed retina vol.6, pp.1, 2016, https://doi.org/10.1038/srep30226
- Vitamin A Supplementation Alleviates Extrahepatic Cholestasis Liver Injury through Nrf2 Activation vol.2014, 2014, https://doi.org/10.1155/2014/273692
- Anti-Inflammatory and Antioxidant Mechanism of Tangeretin in Activated Microglia vol.11, pp.2, 2016, https://doi.org/10.1007/s11481-016-9657-x
- Lancemaside A inhibits microglial activation via modulation of JNK signaling pathway vol.431, pp.3, 2013, https://doi.org/10.1016/j.bbrc.2013.01.049
- Lycium barbarum polysaccharide attenuates chemotherapy-induced ovarian injury by reducing oxidative stress 2017, https://doi.org/10.1111/jog.13416
- DADLE improves hepatic ischemia/reperfusion injury in mice via activation of the Nrf2/HO-1 pathway vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7393
- NrF2/ARE and NF-κB pathway regulation may be the mechanism for lutein inhibition of human breast cancer cell vol.14, pp.8, 2018, https://doi.org/10.2217/fon-2017-0584
- WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress vol.64, pp.5, 2018, https://doi.org/10.1139/cjm-2017-0716
- Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1 vol.11, pp.1, 2019, https://doi.org/10.1038/s41368-018-0039-5
- Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations pp.00225142, 2019, https://doi.org/10.1002/jsfa.9550
- Nrf2 is involved in osmoregulation, antioxidation and immunopotentiation in Coilia nasus under salinity stress vol.33, pp.1, 2012, https://doi.org/10.1080/13102818.2019.1673671
- Luteolin Shifts Oxaliplatin-Induced Cell Cycle Arrest at G 0 /G 1 to Apoptosis in HCT116 Human Colorectal Carcinoma Cells vol.11, pp.4, 2019, https://doi.org/10.3390/nu11040770
- Isolation of Myricitrin and 3,5-di-O-Methyl Gossypetin from Syzygium samarangense and Evaluation of their Involvement in Protecting Keratinocytes against Oxidative Stress via Activation of the Nrf-2 P vol.24, pp.9, 2012, https://doi.org/10.3390/molecules24091839
- 7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells vol.27, pp.4, 2019, https://doi.org/10.4062/biomolther.2018.211
- Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells vol.8, pp.10, 2012, https://doi.org/10.3390/cells8101159
- Caffeic acid phenethyl ester (CAPE): pharmacodynamics and potential for therapeutic application vol.66, pp.3, 2019, https://doi.org/10.3897/pharmacia.66.e38573
- Supplementation of p-coumaric acid exhibits chemopreventive effect via induction of Nrf2 in a short-term preclinical model of colon cancer vol.28, pp.6, 2012, https://doi.org/10.1097/cej.0000000000000496
- Natural Nrf2 Modulators for Skin Protection vol.9, pp.9, 2012, https://doi.org/10.3390/antiox9090812
- Lack of Offspring Nrf2 Does Not Exacerbate the Detrimental Metabolic Outcomes Caused by In Utero PCB126 Exposure vol.12, pp.None, 2021, https://doi.org/10.3389/fendo.2021.777831
- Extracts of the Tiger Milk Mushroom (Lignosus rhinocerus) Enhance Stress Resistance and Extend Lifespan in Caenorhabditis elegans via the DAF-16/FoxO Signaling Pathway vol.14, pp.2, 2021, https://doi.org/10.3390/ph14020093
- Cratoxylum formosum dyer extract alleviates testicular damage in hypertensive rats vol.53, pp.2, 2012, https://doi.org/10.1111/and.13917
- Antioxidant activities and mechanisms of polysaccharides vol.97, pp.3, 2012, https://doi.org/10.1111/cbdd.13798
- Protective Role of Vanillic Acid against Diethylnitrosamine- and 1,2-Dimethylhydrazine-Induced Hepatocarcinogenesis in Rats vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092718
- Leishmania donovani Targets Host Transcription Factor NRF2 To Activate Antioxidant Enzyme HO-1 and Transcriptional Repressor ATF3 for Establishing Infection vol.89, pp.7, 2012, https://doi.org/10.1128/iai.00764-20
- Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway vol.10, pp.10, 2021, https://doi.org/10.3390/cells10102635
- Recent Updates on Marine Cancer-Preventive Compounds vol.19, pp.10, 2012, https://doi.org/10.3390/md19100558
- Cytoprotective Peptides from Blue Mussel Protein Hydrolysates: Identification and Mechanism Investigation in Human Umbilical Vein Endothelial Cells Injury vol.19, pp.11, 2012, https://doi.org/10.3390/md19110609
- Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms vol.912, pp.None, 2021, https://doi.org/10.1016/j.ejphar.2021.174604
- 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis vol.18, pp.1, 2012, https://doi.org/10.1186/s12974-021-02143-w