DOI QR코드

DOI QR Code

Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes

  • Keum, Young-Sam (Department of Biochemistry, College of Pharmacy, Dongguk University)
  • Received : 2011.04.12
  • Accepted : 2011.08.17
  • Published : 2012.03.31

Abstract

The molecular mechanisms by which a variety of naturally-occurring dietary compounds exert chemopreventive effects have been a subject of intense scientific investigations. Induction of phase II detoxification and anti-oxidant enzymes through activation of Nrf2/ARE-dependent gene is recognized as one of the major cellular defense mechanisms against oxidative or xenobiotic stresses and currently represents a critical chemopreventive mechanism of action. In the present review, the functional significance of Keap1/Nrf2 protein module in regulating ARE-dependent phase II detoxification and anti-oxidant gene expression is discussed. The biochemical mechanisms underlying the phosphorylation and expression of Keap1/Nrf2 proteins that are controlled by the intracellular signaling kinases and ubiquitin-mediated E3 ligase system as well as control of nucleocytoplasmic translocation of Nrf2 by its innate nuclear export signal (NES) are described.

Keywords

References

  1. Chen, C., Seth, A. K. and Aplin, A. E. (2006) Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol. Cancer Res. 4, 695-707. https://doi.org/10.1158/1541-7786.MCR-06-0182
  2. Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. and Ting, J. P. (2006) DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA. 103, 15091-15096. https://doi.org/10.1073/pnas.0607260103
  3. Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. and Diehl, J. A. (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell Biol. 24, 8477-8486. https://doi.org/10.1128/MCB.24.19.8477-8486.2004
  4. Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J. and Diehl, J. A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell Biol. 23, 7198-7209. https://doi.org/10.1128/MCB.23.20.7198-7209.2003
  5. Furukawa, M., He, Y. J., Borchers, C. and Xiong, Y. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol. 5, 1001-1007. https://doi.org/10.1038/ncb1056
  6. Furukawa, M. and Xiong, Y. (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell Biol. 25, 162-171. https://doi.org/10.1128/MCB.25.1.162-171.2005
  7. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell. 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  8. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell. 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  9. He, C. H., Gong, P., Hu, B., Stewart, D., Choi, M. E., Choi, A. M. and Alam, J. (2001) Identifi cation of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase- 1 gene regulation. J. Biol. Chem. 276, 20858-20865. https://doi.org/10.1074/jbc.M101198200
  10. Higa, L. A. and Zhang, H. (2007) Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell. Div. 2, 5. https://doi.org/10.1186/1747-1028-2-5
  11. Huang, H. C., Nguyen, T. and Pickett, C. B. (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA. 97, 12475-12480. https://doi.org/10.1073/pnas.220418997
  12. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322. https://doi.org/10.1006/bbrc.1997.6943
  13. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86. https://doi.org/10.1101/gad.13.1.76
  14. Jain, A. K. and Jaiswal, A. K. (2006) Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J. Biol. Chem. 281, 12132-12142. https://doi.org/10.1074/jbc.M511198200
  15. Jeong, W. S., Keum, Y. S., Chen, C., Jain, M. R., Shen, G., Kim, J. H., Li, W. and Kong, A. N. (2005) Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J. Biochem. Mol. Biol. 38, 167-176. https://doi.org/10.5483/BMBRep.2005.38.2.167
  16. Kaelin, W. G. Jr. (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer. 2, 673-682. https://doi.org/10.1038/nrc885
  17. Kang, M. I., Kobayashi, A., Wakabayashi, N., Kim, S. G. and Yamamoto, M. (2004) Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc. Natl. Acad. Sci. USA. 101, 2046-2051. https://doi.org/10.1073/pnas.0308347100
  18. Karapetian, R. N., Evstafi eva, A. G., Abaeva, I. S., Chichkova, N. V., Filonov, G. S., Rubtsov, Y. P., Sukhacheva, E. A., Melnikov, S. V., Schneider, U., Wanker, E. E. and Vartapetian, A. B. (2005) Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes. Mol. Cell Biol. 25, 1089-1099. https://doi.org/10.1128/MCB.25.3.1089-1099.2005
  19. Kensler, T. W., Wakabayashi, N. and Biswal, S. (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
  20. Keum, Y. S., Jeong, W. S. and Kong, A. N. (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. 555, 191-202. https://doi.org/10.1016/j.mrfmmm.2004.05.024
  21. Kobayashi, M. and Yamamoto, M. (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox. Signal. 7, 385-394. https://doi.org/10.1089/ars.2005.7.385
  22. Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223.
  23. Li, W., Jain, M. R., Chen, C., Yue, X., Hebbar, V., Zhou, R. and Kong, A. N. (2005) Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J. Biol. Chem. 280, 28430-28438. https://doi.org/10.1074/jbc.M410601200
  24. Li, W. and Kong, A. N. (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48, 91-104. https://doi.org/10.1002/mc.20465
  25. Li, W., Yu, S. W. and Kong, A. N. (2006) Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J. Biol. Chem. 281, 27251-27263. https://doi.org/10.1074/jbc.M602746200
  26. Lippman, S. M. and Hawk, E. T. (2009) Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Res. 69, 5269-5284. https://doi.org/10.1158/0008-5472.CAN-09-1750
  27. Lippman, S. M., Klein, E. A., Goodman, P. J., Lucia, M. S., Thompson, I. M., Ford, L. G., Parnes, H. L., Minasian, L. M., Gaziano, J. M., Hartline, J. A., Parsons, J. K., Bearden, J. D. 3rd, Crawford, E. D., Goodman, G. E., Claudio, J., Winquist, E., Cook, E. D., Karp, D. D., Walther, P., Lieber, M. M., Kristal, A. R., Darke, A. K., Arnold, K. B., Ganz, P. A., Santella, R. M., Albanes, D., Taylor, P. R., Probstfi eld, J. L., Jagpal, T. J., Crowley, J. J., Meyskens, F. L. Jr, Baker, L. H. and Coltman, C. A. Jr. (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 301, 39-51. https://doi.org/10.1001/jama.2008.864
  28. Liu, J., Furukawa, M., Matsumoto, T. and Xiong, Y. (2002) NEDD8 modifi cation of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell. 10, 1511-1518. https://doi.org/10.1016/S1097-2765(02)00783-9
  29. Lo, S. C, and Hannink, M. (2006) CAND1-mediated substrate adaptor recycling is required for effi cient repression of Nrf2 by Keap1. Mol. Cell Biol. 26, 1235-1244. https://doi.org/10.1128/MCB.26.4.1235-1244.2006
  30. McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Keap1- dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element- driven gene expression. J. Biol. Chem. 278, 21592-21600. https://doi.org/10.1074/jbc.M300931200
  31. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M. and Hayes, J. D. (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279, 31556- 31567. https://doi.org/10.1074/jbc.M403061200
  32. Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J. D. and Yamamoto, M. (2002) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 294, 1-12. https://doi.org/10.1016/S0378-1119(02)00788-6
  33. Nakayama, K. I. and Nakayama, K. (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer. 6, 369-381. https://doi.org/10.1038/nrc1881
  34. Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536-4541. https://doi.org/10.1074/jbc.M207293200
  35. Nioi, P., Nguyen, T., Sherratt, P. J. and Pickett, C. B. (2005) The carboxy- terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell Biol. 25, 10895-10906. https://doi.org/10.1128/MCB.25.24.10895-10906.2005
  36. Ohtsubo, T., Kamada, S., Mikami, T., Murakami, H. and Tsujimoto, Y. (1999) Identifi cation of NRF2, a member of the NF-E2 family of transcription factors, as a substrate for caspase-3(-like) proteases. Cell Death Differ. 6, 865-872. https://doi.org/10.1038/sj.cdd.4400566
  37. Omenn, G. S., Goodman, G. E., Thornquist, M. D., Balmes, J., Cullen, M. R., Glass, A., Keogh, J. P., Meyskens, F. L., Valanis, B., Williams, J. H., Barnhart, S. and Hammar, S. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150-1155. https://doi.org/10.1056/NEJM199605023341802
  38. Petroski, M. D. and Deshaies, R. J. (2005) Function and regulation of cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology 6, 9-20. https://doi.org/10.1038/nrm1547
  39. Pickart, C. M. (2004) Back to the future with ubiquitin. Cell. 116, 181- 190. https://doi.org/10.1016/S0092-8674(03)01074-2
  40. Sharpless, N. E. and Depinho, R. A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741-754. https://doi.org/10.1038/nrd2110
  41. Sumara, I., Maerki, S. and Peter, M. (2008) E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 18, 84-94. https://doi.org/10.1016/j.tcb.2007.12.001
  42. Sun, J., Hoshino, H., Takaku, K., Nakajima, O., Muto, A., Suzuki, H., Tashiro, S., Takahashi, S., Shibahara, S., Alam, J., Taketo, M. M., Yamamoto, M. and Igarashi, K. (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO. J. 21, 5216-5224. https://doi.org/10.1093/emboj/cdf516
  43. Sykiotis, G. P. and Bohmann, D. (2010) Stress-activated cap'n'collar transcription factors in aging and human disease. Sci. Signal. 3 (112), re3. https://doi.org/10.1126/scisignal.3112re3
  44. Tong, K. I., Kobayashi, A., Katsuoka, F. and Yamamoto, M. (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387, 1311-1320.
  45. Tong, K. I., Padmanabhan, B., Kobayashi, A., Shang, C., Hirotsu, Y., Yokoyama, S. and Yamamoto, M. (2007) Different electrostatic potentials defi ne ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell Biol. 27, 7511-7521. https://doi.org/10.1128/MCB.00753-07
  46. Vogelstein, B. and Kinzler, K. W. (2004) Cancer genes and the pathways they control. Nat. Med. 10, 789-799. https://doi.org/10.1038/nm1087
  47. Zhang, D. D. (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789. https://doi.org/10.1080/03602530600971974
  48. Zhang, D. D. and Hannink, M. (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell Biol. 23, 8137-8151. https://doi.org/10.1128/MCB.23.22.8137-8151.2003

Cited by

  1. β-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia vol.12, pp.1, 2015, https://doi.org/10.1186/s12974-015-0355-z
  2. Metabolism and antiproliferative effects of sulforaphane and broccoli sprouts in human intestinal (Caco-2) and hepatic (HepG2) cells vol.14, pp.6, 2015, https://doi.org/10.1007/s11101-015-9422-4
  3. Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25–35 neurotoxicity vol.304, 2015, https://doi.org/10.1016/j.neuroscience.2015.07.030
  4. Effect of 7, 8-dihydroxyflavone on the up-regulation of Nrf2-mediated heme oxygenase-1 expression in hamster lung fibroblasts vol.50, pp.6, 2014, https://doi.org/10.1007/s11626-014-9735-4
  5. 7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1 vol.2013, 2013, https://doi.org/10.1155/2013/863720
  6. Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia vol.1831, pp.6, 2013, https://doi.org/10.1016/j.bbalip.2013.01.020
  7. Can nitroxides evoke the Keap1–Nrf2–ARE pathway in skin? vol.77, 2014, https://doi.org/10.1016/j.freeradbiomed.2014.08.021
  8. Anti-Inflammatory Effect of Ginsenoside Rg5 in Lipopolysaccharide-Stimulated BV2 Microglial Cells vol.14, pp.5, 2013, https://doi.org/10.3390/ijms14059820
  9. Suppression of Lipopolysaccharide-Induced Neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 Signaling Pathway Modulation vol.65, pp.2, 2017, https://doi.org/10.1021/acs.jafc.6b05147
  10. Triphlorethol-A from Ecklonia cava Up-Regulates the Oxidant Sensitive 8-Oxoguanine DNA Glycosylase 1 vol.12, pp.11, 2014, https://doi.org/10.3390/md12115357
  11. Anti-inflammatory Mechanism of Ginseng Saponin Metabolite Rh3 in Lipopolysaccharide-Stimulated Microglia: Critical Role of 5′-Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway vol.63, pp.13, 2015, https://doi.org/10.1021/jf506110y
  12. Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-2183-z
  13. Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1 vol.29, pp.4, 2016, https://doi.org/10.1021/acs.chemrestox.6b00016
  14. The dermato-protective effects of lucidone from Lindera erythrocarpa through the induction of Nrf2-mediated antioxidant genes in UVA-irradiated human skin keratinocytes vol.12, 2015, https://doi.org/10.1016/j.jff.2014.10.019
  15. Molecular and Chemical Regulation of the Keap1-Nrf2 Signaling Pathway vol.19, pp.7, 2014, https://doi.org/10.3390/molecules190710074
  16. Ethanol Extract ofCirsium japonicumvar.ussurienseKitamura Exhibits the Activation of Nuclear Factor Erythroid 2-Related Factor 2-dependent Antioxidant Response Element and Protects Human Keratinocyte HaCaT Cells Against Oxidative DNA Damage vol.21, pp.1, 2016, https://doi.org/10.15430/JCP.2016.21.1.66
  17. Dietary total antioxidant capacity as a tool in health outcomes in middle-aged and older adults: A systematic review 2018, https://doi.org/10.1080/10408398.2016.1230089
  18. miR-302 Attenuates Amyloid-β-Induced Neurotoxicity through Activation of Akt Signaling vol.50, pp.4, 2016, https://doi.org/10.3233/JAD-150741
  19. Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways vol.21, pp.5, 2013, https://doi.org/10.4062/biomolther.2013.069
  20. Lutein acts via multiple antioxidant pathways in the photo-stressed retina vol.6, pp.1, 2016, https://doi.org/10.1038/srep30226
  21. Vitamin A Supplementation Alleviates Extrahepatic Cholestasis Liver Injury through Nrf2 Activation vol.2014, 2014, https://doi.org/10.1155/2014/273692
  22. Anti-Inflammatory and Antioxidant Mechanism of Tangeretin in Activated Microglia vol.11, pp.2, 2016, https://doi.org/10.1007/s11481-016-9657-x
  23. Lancemaside A inhibits microglial activation via modulation of JNK signaling pathway vol.431, pp.3, 2013, https://doi.org/10.1016/j.bbrc.2013.01.049
  24. Lycium barbarum polysaccharide attenuates chemotherapy-induced ovarian injury by reducing oxidative stress 2017, https://doi.org/10.1111/jog.13416
  25. DADLE improves hepatic ischemia/reperfusion injury in mice via activation of the Nrf2/HO-1 pathway vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7393
  26. NrF2/ARE and NF-κB pathway regulation may be the mechanism for lutein inhibition of human breast cancer cell vol.14, pp.8, 2018, https://doi.org/10.2217/fon-2017-0584
  27. WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress vol.64, pp.5, 2018, https://doi.org/10.1139/cjm-2017-0716
  28. Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1 vol.11, pp.1, 2019, https://doi.org/10.1038/s41368-018-0039-5
  29. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations pp.00225142, 2019, https://doi.org/10.1002/jsfa.9550
  30. Nrf2 is involved in osmoregulation, antioxidation and immunopotentiation in Coilia nasus under salinity stress vol.33, pp.1, 2012, https://doi.org/10.1080/13102818.2019.1673671
  31. Luteolin Shifts Oxaliplatin-Induced Cell Cycle Arrest at G 0 /G 1 to Apoptosis in HCT116 Human Colorectal Carcinoma Cells vol.11, pp.4, 2019, https://doi.org/10.3390/nu11040770
  32. Isolation of Myricitrin and 3,5-di-O-Methyl Gossypetin from Syzygium samarangense and Evaluation of their Involvement in Protecting Keratinocytes against Oxidative Stress via Activation of the Nrf-2 P vol.24, pp.9, 2012, https://doi.org/10.3390/molecules24091839
  33. 7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells vol.27, pp.4, 2019, https://doi.org/10.4062/biomolther.2018.211
  34. Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells vol.8, pp.10, 2012, https://doi.org/10.3390/cells8101159
  35. Caffeic acid phenethyl ester (CAPE): pharmacodynamics and potential for therapeutic application vol.66, pp.3, 2019, https://doi.org/10.3897/pharmacia.66.e38573
  36. Supplementation of p-coumaric acid exhibits chemopreventive effect via induction of Nrf2 in a short-term preclinical model of colon cancer vol.28, pp.6, 2012, https://doi.org/10.1097/cej.0000000000000496
  37. Natural Nrf2 Modulators for Skin Protection vol.9, pp.9, 2012, https://doi.org/10.3390/antiox9090812
  38. Lack of Offspring Nrf2 Does Not Exacerbate the Detrimental Metabolic Outcomes Caused by In Utero PCB126 Exposure vol.12, pp.None, 2021, https://doi.org/10.3389/fendo.2021.777831
  39. Extracts of the Tiger Milk Mushroom (Lignosus rhinocerus) Enhance Stress Resistance and Extend Lifespan in Caenorhabditis elegans via the DAF-16/FoxO Signaling Pathway vol.14, pp.2, 2021, https://doi.org/10.3390/ph14020093
  40. Cratoxylum formosum dyer extract alleviates testicular damage in hypertensive rats vol.53, pp.2, 2012, https://doi.org/10.1111/and.13917
  41. Antioxidant activities and mechanisms of polysaccharides vol.97, pp.3, 2012, https://doi.org/10.1111/cbdd.13798
  42. Protective Role of Vanillic Acid against Diethylnitrosamine- and 1,2-Dimethylhydrazine-Induced Hepatocarcinogenesis in Rats vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092718
  43. Leishmania donovani Targets Host Transcription Factor NRF2 To Activate Antioxidant Enzyme HO-1 and Transcriptional Repressor ATF3 for Establishing Infection vol.89, pp.7, 2012, https://doi.org/10.1128/iai.00764-20
  44. Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway vol.10, pp.10, 2021, https://doi.org/10.3390/cells10102635
  45. Recent Updates on Marine Cancer-Preventive Compounds vol.19, pp.10, 2012, https://doi.org/10.3390/md19100558
  46. Cytoprotective Peptides from Blue Mussel Protein Hydrolysates: Identification and Mechanism Investigation in Human Umbilical Vein Endothelial Cells Injury vol.19, pp.11, 2012, https://doi.org/10.3390/md19110609
  47. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms vol.912, pp.None, 2021, https://doi.org/10.1016/j.ejphar.2021.174604
  48. 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis vol.18, pp.1, 2012, https://doi.org/10.1186/s12974-021-02143-w