References
- Aid, S., Vancassel, S., Poumès-Ballihaut, C., Chalon, S., Guesnet, P. and Lavialle, M. (2003) Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J. Lipid. Res. 44, 1545-1551. https://doi.org/10.1194/jlr.M300079-JLR200
-
Arsenault. D., Julien, C. and Calon, F. (2011) Chronic dietary intake of
$\alpha$ -linolenic acid does not replicate the effects of DHA on passive properties of entorhinal cortex neurons. Br. J. Nutr. 19, 1-13. - Bailes, J. E. and Mills, J. D. (2010) Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J. Neurotrauma. 27, 1617-1624. https://doi.org/10.1089/neu.2009.1239
- Bazan, N. G. (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15, 159-166.
- Bazan, N. G., Molina, M. F. and Gordon, W. C. (2011) Docosahexaenoic acid signalolipidomics in nutrition: signifi cance in aging, neuroinfl ammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu. Rev. Nutr. 31, 321-351. https://doi.org/10.1146/annurev.nutr.012809.104635
-
Beck, G., Sugiura, Y., Shinzawa, K., Kato, S., Setou, M., Tsujimoto, Y., Sakoda, S. and Sumi-Akamaru, H. (2011) Neuroaxonal dystrophy in calcium-independent phospholipase
$A2{\beta}$ defi ciency results from insuffi cient remodeling and degeneration of mitochondrial and presynaptic membranes. J. Neurosci. 31, 11411-11420. https://doi.org/10.1523/JNEUROSCI.0345-11.2011 - Berry, C. B., Hayes, D., Murphy, A., Wiessner, M., Rauen, T. and Mc- Bean, G. J. (2005) Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid. Brain Res. 1037, 123-133. https://doi.org/10.1016/j.brainres.2005.01.008
- Calderon, F. and Kim, H. Y. (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 90, 979- 988. https://doi.org/10.1111/j.1471-4159.2004.02520.x
- Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., Rostaing, P., Triller, A., Salem, N. Jr., Ashe, K. H., Frautschy, S. A. and Cole, G. M. (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron. 43, 633-645. https://doi.org/10.1016/j.neuron.2004.08.013
- Cao, D., Kevala, K., Kim, J., Moon, H. S., Jun, S. B., Lovinger, D. and Kim, H. Y. (2009) Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J. Neurochem. 111, 510-521. https://doi.org/10.1111/j.1471-4159.2009.06335.x
- Chalon, S. (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins. Leukot. Essent. Fatty Acids. 75, 259-269. https://doi.org/10.1016/j.plefa.2006.07.005
- Chytrova, G., Ying, Z. and Gomez-Pinilla, F. (2010) Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res. 1341, 32-40. https://doi.org/10.1016/j.brainres.2009.05.018
- Cole, G. M., Lim, G. P., Yang, F., Teter, B., Begum, A., Ma, Q., Harris- White, M. E. and Frautschy, S. A. (2005) Prevention of Alzheimer's disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging. 26(Suppl 1), 133-136. https://doi.org/10.1016/j.neurobiolaging.2005.09.005
- Dagai, L., Peri-Naor, R. and Birk, R. Z. (2009) Docosahexaenoic acid signifi cantly stimulates immediate early response genes and neurite outgrowth. Neurochem. Res. 34, 867-875. https://doi.org/10.1007/s11064-008-9845-z
- de Urquiza, A. M., Liu, S., Sjöberg, M., Zetterström, R. H., Griffi ths, W., Sjövall, J. and Perlmann, T. (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 290, 2140-2144. https://doi.org/10.1126/science.290.5499.2140
- Dyall, S. C., Michael, G. J., Whelpton, R., Scott, A. G. and Michael-Titus, A. T. (2007) Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiol. Aging. 28, 424-439. https://doi.org/10.1016/j.neurobiolaging.2006.01.002
- Farooqui, A. A. (2009) Bebefi cial Effects of Fish Oil on Human Brain. Springer, New York.
- Farooqui, A. A. (2010a) Purifi cation, properties and role of plasmalogen- selective PLA2 from pig brain. Mol. Neurobiol. 41, 267-273. https://doi.org/10.1007/s12035-009-8091-y
- Farooqui, A. A. (2010b) Modulation of neurotransmission signaling by neural membrane polyunsaturated fatty acids in Biogenic Amines: Pharmacological, Neurochemical, and Molecular Aspects in CNS, pp. 219-246, Nova Science Publishers Inc, Hauppauge, New York.
- Farooqui, A. A., Horrocks, L. A. and Farooqui, T. (2007) Modulation of infl ammation in brain: a matter of fat. J. Neurochem. 101, 577-599.
- Farooqui, A. A., Ong, W. Y. and Horrocks, L. A. (2003) Plasmalogens, docosahexaenoic acid and neurological disorders. Adv. Exp. Med. Biol. 544, 335-354. https://doi.org/10.1007/978-1-4419-9072-3_45
- Grintal, B., Champeil-Potokar, G., Lavialle, M., Vancassel, S., Breton, S. and Denis, I. (2009) Inhibition of astroglial glutamate transport by polyunsaturated fatty acids: evidence for a signalling role of docosahexaenoic acid. Neurochem. Int. 54, 535-543. https://doi.org/10.1016/j.neuint.2009.02.018
- He, C., Qu, X., Cui, L., Wang, J. and Kang, J. X. (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc. Natl. Acad. Sci. USA. 106,11370-11375. https://doi.org/10.1073/pnas.0904835106
- Jones, C. R., Arai, T. and Rapoportm S, I. (1997) Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 22, 663-670. https://doi.org/10.1023/A:1027341707837
- Kim, H. Y., Moon, H. S., Cao, D., Lee, J., Kevala, K., Jun, S. B., Lovinger, D. M., Akbar, M. and Huang, B. X. (2011a) N-Docosahexaenoylethanolamide promotes development of hippocampal neurons. Biochem. J. 435, 327-336. https://doi.org/10.1042/BJ20102118
- Kim, H. Y., Spector, A. A. and Xiong, Z. M. (2011b) A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins. Other. Lipid. Mediat. 96, 114-120. https://doi.org/10.1016/j.prostaglandins.2011.07.002
- Kim, Y. J. and Chung, H. Y. (2007) Antioxidative and anti-infl ammatory actions of docosahexaenoic acid and eicosapentaenoic acid in renal epithelial cells and macrophages. J. Med. Food. 10, 225-231. https://doi.org/10.1089/jmf.2006.092
- Kitajka, K. , Puskás, L. G., Zvara, A., Hackler, L. Jr., Barceló-Coblijn, G., Yeo, Y. K. and Farkas, T. (2002) The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl. Acad. Sci. USA. 99, 2619-2624. https://doi.org/10.1073/pnas.042698699
- Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C. and Chalon, S. (2004) Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. J. Neurochem. 89, 695-702. https://doi.org/10.1111/j.1471-4159.2004.02401.x
- Lafourcade, M., Larrieu, T., Mato, S., Duffaud, A., Sepers, M., Matias, I., De Smedt-Peyrusse, V., Labrousse, V. F., Bretillon, L., Matute, C., Rodriguez-Puertas, R., Layé, S. and Manzoni, O. J. (2011) Nutritional omega-3 defi ciency abolishes endocannabinoid-mediated neuronal functions. Nat. Neurosci. 14, 345-350. https://doi.org/10.1038/nn.2736
- Lengqvist, J., Mata De Urquiza, A., Bergman, A. C., Willson, T. M., Sjövall, J., Perlmann, T. and Griffi ths, W. J. (2004) Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol. Cell. Proteomics. 3, 692-703. https://doi.org/10.1074/mcp.M400003-MCP200
- Little, S. J., Lynch, M. A., Manku, M. and Nicolaou, A. (2007) Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: a lipidomic analysis. Prostaglandins. Leukot. Essent. Fatty. Acids. 77, 155-162. https://doi.org/10.1016/j.plefa.2007.08.009
- Liu, J. W., Almaguel, F. G., Bu, L., De Leon, D. D. and De Leon, M. (2008) Expression of E-FABP in PC12 cells increases neurite extension during differentiation: involvement of n-3 and n-6 fatty acids. J. Neurochem. 106, 2015-2029.
- Logan, A. C. (2004) Omega-3 fatty acids and major depression: a primer for the mental health professional. Lipids. Health Dis. 3, 25. https://doi.org/10.1186/1476-511X-3-25
- Ma, D., Zhang, M., Larsen, C. P., Xu, F., Hua, W., Yamashima, T., Mao, Y. and Zhou, L. (2010) DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene. Brain Res. 1330, 1-8. https://doi.org/10.1016/j.brainres.2010.03.002
- Mathieu, G., Denis, S., Langelier, B., Denis, I., Lavialle, M. and Vancassel, S. (2010) DHA enhances the noradrenaline release by SHSY5Y cells. Neurochem. Int. 56, 94-100. https://doi.org/10.1016/j.neuint.2009.09.006
- Matta, J. A., Miyares, R. L. and Ahern, G. P. (2007) TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J. Physiol. 578, 397-411. https://doi.org/10.1113/jphysiol.2006.121988
- Mayurasakorn. K., Williams, J. J., Ten, V. S. and Deckelbaum, R. J. (2011) Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia. Curr. Opin. Clin. Nutr. Metab. Care. 14, 158-167. https://doi.org/10.1097/MCO.0b013e328342cba5
- Mazelova, J., Ransom, N., Astuto-Gribble, L., Wilson, M. C. and Deretic, D. (2003) Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. J. Cell Sci. 122, 2003-2013.
- McNamara, R. K., Sullivan, J., Richtand, N. M., Jandacek, R., Rider, T., Tso, P., Campbell, N. and Lipton, J. (2008) Omega-3 fatty acid defi ciency augments amphetamine-induced behavioral sensitization in adult DBA/2J mice: relationship with ventral striatum dopamine concentrations. Synapse. 62, 725-735. https://doi.org/10.1002/syn.20542
- Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N. and Bazan, N. G. (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA. 101, 8491-8496. https://doi.org/10.1073/pnas.0402531101
- Nabekura, J., Noguchi, K., Witt, M. R., Nielsen, M. and Akaike, N. (1998) Functional modulation of human recombinant gamma-aminobutyric acid type A receptor by docosahexaenoic acid. J. Biol. Chem. 273, 11056-11061. https://doi.org/10.1074/jbc.273.18.11056
- Nakamoto, K., Nishinaka, T., Mankura, M., Fujita-Hamabe, W. and Tokuyama, S. (2010) Antinociceptive effects of docosahexaenoic acid against various pain stimuli in mice. Biol. Pharm. Bull. 33, 1070-1072. https://doi.org/10.1248/bpb.33.1070
- Oster, T. and Pillot, T. (2010) Docosahexaenoic acid and synaptic protection in Alzheimer's disease mice. Biochim. Biophys. Acta. 1801, 791-798. https://doi.org/10.1016/j.bbalip.2010.02.011
- Perez, S. E., Berg, B. M., Moore, K. A., He, B., Counts, S. E., Fritz, J. J., Hu, Y. S., Lazarov, O., Lah, J. J. and Mufson, E. J. (2010) DHA diet reduces AD pathology in young APPswe/PS1 Delta E9 transgenic mice: possible gender effects. J. Neurosci. Res. 88, 1026-1040.
- Pifferi, F., Roux, F., Langelier, B., Alessandri, J. M., Vancassel, S., Jouin, M., Lavialle, M. and Guesnet, P. (2005) (n-3) polyunsaturated fatty acid defi ciency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J. Nutr. 135, 2241- 2246.
- Rapoport, S. I. and Igarashi, M. (2009) Can the rat liver maintain normal brain DHA metabolism in the absence of dietary DHA? Prostaglandins. Leukot. Essent. Fatty. Acids. 81, 119-123. https://doi.org/10.1016/j.plefa.2009.05.021
-
Rosa, A. O. and Rapoport, S. I. (2009) Intracellular- and extracellular-derived
$Ca^{2+}$ infl uence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochim. Biophys. Acta. 1791, 697-705. https://doi.org/10.1016/j.bbalip.2009.03.009 - Sakamoto, T., Cansev, M. and Wurtman, R, J. (2007) Oral supplementation with docosahexaenoic acid and uridine-5'-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res. 1182, 50-59. https://doi.org/10.1016/j.brainres.2007.08.089
- Scott, B. L. and Bazan, N. G. (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA. 86, 2903-2907. https://doi.org/10.1073/pnas.86.8.2903
- Shahdat, H., Hashimoto, M., Shimada, T. and Shido, O. (2004) Synaptic plasma membrane-bound acetylcholinesterase activity is not affected by docosahexaenoic acid-induced decrease in membrane order. Life Sci. 74, 3009-3024. https://doi.org/10.1016/j.lfs.2003.10.028
- Sharma, S., Ying, Z. and Gomez-Pinilla, F. (2010) A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp. Neurol. 226, 191-199. https://doi.org/10.1016/j.expneurol.2010.08.027
- Shrivastava, R., Vincent, B., Gobron, S., Cucuat, N. and John, G. W. (2005) Evidence for growth-promoting effects of omega n - 3 fatty acids alone and in combination with a specifi c vitamin and mineral complex in rat neuroblastoma cells. Nutr. Neurosci. 8, 317-321. https://doi.org/10.1080/10284150500510242
-
Strokin, M., Sergeeva, M. and Reiser, G. (2003) Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and
$Ca^{2+}$ . Br. J. Pharmacol. 139, 1014-1022. https://doi.org/10.1038/sj.bjp.0705326 - Su, H. M. (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J. Nutr. Biochem. 21, 364-373. https://doi.org/10.1016/j.jnutbio.2009.11.003
- Utsunomiya, A., Owada, Y., Yoshimoto, T. and Kondo, H. (1997) Localization of mRNA for fatty acid transport protein in developing and mature brain of rats. Brain Res. Mol. Brain Res. 46, 217-222. https://doi.org/10.1016/S0169-328X(96)00303-8
- Walczewska, A., Stepien, T., Bewicz-Binkowska, D. and Zgorzynska, E. (2011) The role of docosahexaenoic acid in neuronal function. Postepy. Hig. Med. Dosw (Online). 65, 314-327. https://doi.org/10.5604/17322693.945763
- Wang, X., Zhao, X., Mao, Z. Y., Wang, X. M. and Liu, Z. L. (2003) Neuroprotective effect of docosahexaenoic acid on glutamateinduced cytotoxicity in rat hippocampal cultures. Neuroreport. 14, 2457-2461. https://doi.org/10.1097/00001756-200312190-00033
- Wu, A., Ying, Z. and Gomez-Pinilla, F. (2011) The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J. Neurotrauma. 28, 2113-2122. https://doi.org/10.1089/neu.2011.1872
- Wu, H., Ichikawa, S., Tani, C., Zhu, B., Tada, M., Shimoishi, Y., Murata, Y. and Nakamura, Y. (2009) Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Biochim. Biophys. Acta. 1791, 8-16. https://doi.org/10.1016/j.bbalip.2008.10.004
- Wurtman, R. J., Cansev, M., Sakamoto, T. and Ulus, I. H. (2009a) Use of phosphatide precursors to promote synaptogenesis. Annu. Rev. Nutr. 29, 59-87.
- Wurtman, R. J., Cansev, M. and Ulus, I. H. (2009b) Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides. J. Nutr. Health Aging. 13, 189-197. https://doi.org/10.1007/s12603-009-0056-3
- Wurtman, R. J., Cansev, M., Sakamoto, T. and Ulus, I. (2010) Nutritional modifi ers of aging brain function: use of uridine and other phosphatide precursors to increase formation of brain synapses. Nutr. Rev. 68(Suppl 2), S88-101. https://doi.org/10.1111/j.1753-4887.2010.00344.x
- Zimmer, L., Hembert, S., Durand, G., Breton, P., Guilloteau, D., Besnard, J. C. and Chalon, S. (1998) Chronic n-3 polyunsaturated fatty acid diet-defi ciency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study. Neurosci. Lett. 240, 177-181. https://doi.org/10.1016/S0304-3940(97)00938-5
Cited by
- Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes vol.41, 2014, https://doi.org/10.1016/j.bbi.2014.03.021
- Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors vol.6, pp.1, 2016, https://doi.org/10.1038/srep19839
- Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0135353
- Omega-3 fatty acids moderate effects of physical activity on cognitive function vol.59, 2014, https://doi.org/10.1016/j.neuropsychologia.2014.04.018
- Quantitative Erythrocyte Omega-3 EPA Plus DHA Levels are Related to Higher Regional Cerebral Blood Flow on Brain SPECT vol.58, pp.4, 2017, https://doi.org/10.3233/JAD-170281
- Polyunsaturated fatty acids and endocannabinoids in health and disease 2017, https://doi.org/10.1080/1028415X.2017.1347373
- Serum phosphatidylinositol as a biomarker for bipolar disorder liability vol.19, pp.2, 2017, https://doi.org/10.1111/bdi.12468
- Phosphatidylserine and the human brain vol.31, pp.6, 2015, https://doi.org/10.1016/j.nut.2014.10.014
- Recent developments in lipid metabolism in ruminants – the role of fat in maintaining animal health and performance vol.54, pp.10, 2014, https://doi.org/10.1071/AN14555
- Phosphatidylserine enhancesIKBKAPtranscription by activating the MAPK/ERK signaling pathway vol.25, pp.7, 2016, https://doi.org/10.1093/hmg/ddw011
- Docosahexaenoic acid prevents resistance to antiepileptic drugs in two animal models of drug-resistant epilepsy pp.1476-8305, 2018, https://doi.org/10.1080/1028415X.2017.1422903
- Effects of emulsifier type on physical and oxidative stabilities of algae il-in-water emulsions pp.09505423, 2018, https://doi.org/10.1111/ijfs.13981
- Comparative study on the independent and combined effects of omega-3 and vitamin B12 on phospholipids and phospholipase A2 as phospholipid hydrolyzing enzymes in PPA-treated rats as a model for autistic traits vol.17, pp.1, 2018, https://doi.org/10.1186/s12944-018-0850-1
- An update on intracerebral stem cell grafts vol.18, pp.7, 2018, https://doi.org/10.1080/14737175.2018.1491309
- Principal component analysis identifies differential gender-specific dietary patterns that may be linked to mental distress in human adults pp.1476-8305, 2018, https://doi.org/10.1080/1028415X.2018.1500198
- Antioxidative capacity of hydrolyzed rapeseed cake extract and oxidative stability of fish oil-in-water emulsion added with the extract vol.24, pp.4, 2012, https://doi.org/10.11002/kjfp.2017.24.4.529
- Inverse Phosphatidylcholine/Phosphatidylinositol Levels as Peripheral Biomarkers and Phosphatidylcholine/Lysophosphatidylethanolamine-Phosphatidylserine as Hippocampal Indicator of Postischemic Cognit vol.12, pp.None, 2012, https://doi.org/10.3389/fnins.2018.00989
- Relationship between diet, the gut microbiota, and brain function vol.76, pp.8, 2012, https://doi.org/10.1093/nutrit/nuy016
- Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development vol.11, pp.3, 2012, https://doi.org/10.1093/advances/nmz135
- OMEGA-3 Interventions in Alcohol Dependence and Related Outcomes: A Systematic Review and Propositions vol.18, pp.5, 2020, https://doi.org/10.2174/1570159x18666200128120729
- Docosahexaenoic Acid (DHA, C22:6, ω-3) Composition of Milk and Mammary Gland Tissues of Lactating Mother Rats Is Severely Affected by Lead (Pb) Exposure vol.195, pp.2, 2012, https://doi.org/10.1007/s12011-019-01878-1
- Cross-talk between lipid homeostasis and endoplasmic reticulum stress in neurodegeneration: Insights for HIV-1 associated neurocognitive disorders (HAND) vol.141, pp.None, 2012, https://doi.org/10.1016/j.neuint.2020.104880
- Early Lipid Intake Improves Cerebellar Growth in Very Low‐Birth‐Weight Preterm Infants vol.45, pp.3, 2012, https://doi.org/10.1002/jpen.1868
- Lipid Intake and Neurodevelopment in Preterm Infants vol.22, pp.6, 2012, https://doi.org/10.1542/neo.22-6-e370
- The association between plasma metabolites and sleep quality in the Southall and Brent Revisited (SABRE) Study: A cross‐sectional analysis vol.30, pp.4, 2012, https://doi.org/10.1111/jsr.13245
- Smoflipid Is Better Than Lipofundin for Long-Term Neurodevelopmental Outcomes in Preterm Infants vol.13, pp.8, 2012, https://doi.org/10.3390/nu13082548
- An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases vol.60, pp.None, 2012, https://doi.org/10.1016/j.algal.2021.102556
- The effect of omega-3 long chain polyunsaturated fatty acids on aggressive behaviour in adult male prisoners: a structured study protocol for a multi-centre, double-blind, randomised placebo-controlle vol.22, pp.1, 2021, https://doi.org/10.1186/s13063-021-05252-2