DOI QR코드

DOI QR Code

Isotachophoretically Assisted On-Line Complexation of Trace Metal Ions in a Highly Saline Matrix for Capillary Electrophoresis

  • Kim, Ji-Hye (Department of Chemistry, Seoul National University) ;
  • Choi, Ki-Hwan (Department of Chemistry, Seoul National University) ;
  • Cho, Sun-Young (Department of Chemistry, Seoul National University) ;
  • Riaz, Asif (Department of Chemistry, Seoul National University) ;
  • Chung, Doo-Soo (Department of Chemistry, Seoul National University)
  • Received : 2011.10.26
  • Accepted : 2011.11.30
  • Published : 2012.03.20

Abstract

Trace metal ions such as $Cd^{2+}$, $Ni^{2+}$, and $Zn^{2+}$ in a highly saline sample were subjected to on-line complexation with 4-(2-thiazolylazo) resorcinol (TAR) dissolved in a background electrolyte (BGE) under transient isotachophoresis (TITP) conditions. A long plug of the saline sample, containing the trace metal ions but devoid of TAR, was injected into a coated capillary filled with a BGE composed of 150 mM 2-(cyclohexylamino) ethanesulfonic acid (CHES) and 110 mM triethylamine (TEA) at pH 9.7. Since the electrophoretic mobility of TAR fell between the mobilities of the anionic leading electrolyte ($Cl^-$ in the sample) and the anionic terminating background electrolyte ($CHES^-$), a highly concentrated zone of TAR from the BGE was formed at the rear of the sample matrix and then the metal cations toward the cathode were swept by isotachophoretically assisted on-line complexation (IAOC) between the metal ions and the isotachophoretically stacked TAR. As a result, anionic metal-TAR complexes were formed efficiently, which satisfy the TITP conditions between $Cl^-$ and $CHES^-$. The enrichment factors of metal ions including $Cd^{2+}$ were up to 780-fold compared to a conventional CZE mode using absorbance detection. The detection limits were 17 nM, 15 nM, and 27 nM for $Ni^{2+}$, $Zn^{2+}$, and $Cd^{2+}$ in a 250 mM NaCl matrix, respectively. Our method was successfully applied to the analysis of urine samples without desalting.

Keywords

References

  1. Liu, B.-F.; Liu, L.-B.; Cheng, J.-K. J. Chromatogr. A 1999, 834, 277. https://doi.org/10.1016/S0021-9673(98)01005-X
  2. Timerbaev, A. R. J. Sep. Sci. 2008, 31, 2012. https://doi.org/10.1002/jssc.200800036
  3. Riaz, A.; Kim, B.; Chung, D. S. Electrophoresis 2003, 24, 2788. https://doi.org/10.1002/elps.200305537
  4. Riaz, A.; Chung, D. S. Electrophoresis 2005, 26, 668. https://doi.org/10.1002/elps.200406151
  5. Iki, N.; Hoshino, H.; Yotsuyanagi, T. Chem. Lett. 1993, 701.
  6. Evans, L.; Collins, G. E. J. Chromatogr. A 2001, 911, 127. https://doi.org/10.1016/S0021-9673(00)01254-1
  7. Liu, B.-F.; Liu, L.-B.; Chen, H.; Cheng, J.-K. Anal. Chim. Acta 2001, 434, 309. https://doi.org/10.1016/S0003-2670(01)00806-6
  8. Wang, M.; Lin, J.-M.; Qu, F.; Shan, X. Q.; Chen, Z. L. J. Chromatogr. A 2004, 1029, 249. https://doi.org/10.1016/j.chroma.2003.12.011
  9. Stanley, R. W.; Cheney, G. E. Talanta 1966, 13, 1619. https://doi.org/10.1016/0039-9140(66)80244-8
  10. Nickless, G.; Pollard, F. H.; Samuelson, T. J. Anal. Chim. Acta 1967, 39, 37. https://doi.org/10.1016/S0003-2670(01)80452-9
  11. Gebauer, P.; Thormann, W.; Bocek, P. J. Chromatogr. 1992, 608, 47. https://doi.org/10.1016/0021-9673(92)87104-G
  12. Urbanek, M.; Kivankova, L.; Bocek, P. Electrophoresis 2003, 24, 466. https://doi.org/10.1002/elps.200390056
  13. Timerbaev, A. R.; Hirokawa, T. Electrophoresis 2006, 27, 323. https://doi.org/10.1002/elps.200500320
  14. Mala, Z.; Kivankova, L.; Gebauer, P.; Bocek, P. Electrophoresis 2007, 28, 243. https://doi.org/10.1002/elps.200600397
  15. Riaz, A.; Chung, D. S. Electrophoresis 2006, 27, 553. https://doi.org/10.1002/elps.200500595
  16. Shim, S. H.; Riaz, A.; Choi, K. W.; Chung, D. S. Electrophoresis 2003, 24, 1603. https://doi.org/10.1002/elps.200305411
  17. Gebauer, P.; K ivankova, L.; Pantuckova, P.; Bocek, P.; Thormann, W. Electrophoresis 2000, 21, 2797. https://doi.org/10.1002/1522-2683(20000801)21:14<2797::AID-ELPS2797>3.0.CO;2-P
  18. Kivankova, L.; Pantuckova, P.; Gebauer, P.; Bocek, P.; Caslavska, J.; Thormann, W. Electrophoresis 2003, 24, 505. https://doi.org/10.1002/elps.200390059

Cited by

  1. Advances of a capillary electrophoretic on-line concentration technique: Electrokinetic supercharging vol.40, pp.10, 2017, https://doi.org/10.1080/10826076.2017.1330756
  2. Recent progress in analytical capillary isotachophoresis vol.34, pp.1, 2012, https://doi.org/10.1002/elps.201200323
  3. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2010–2012) vol.34, pp.1, 2012, https://doi.org/10.1002/elps.201200396
  4. Inorganic analysis using CE: Advanced methodologies to face old challenges vol.35, pp.1, 2014, https://doi.org/10.1002/elps.201300302
  5. Direct speciation analysis of organic mercury in fish and kelp by on-line complexation and stacking using capillary electrophoresis vol.281, pp.None, 2012, https://doi.org/10.1016/j.foodchem.2018.12.083