References
- G. Da Prato and M. Iannelli, Existence and regularity for a class of integro-differential equations of parabolic type, Math. Anal. Appl. 112(1)(1985)36-55. https://doi.org/10.1016/0022-247X(85)90275-6
- A. Friedman, Mathematics in Industrial Problems. Part 5, The IMA Volumes in Mathematics and Its Applications, vol. 49, Springer, New York, 1992.
- J. A. Nohel, Nonlinear Volterra equations for heat flow in materials with memory, Integral and Functional Differential Equations (Proc. Conf., West Virginia Univ., Morgantown, W. Va, 1979) (T. L. Herdman, H. W. Stech, and III S. M. Rankin, eds.), Lecture Notes in Pure and Appl. Math., Dekker, New York, 67(1981)3-82.
- H. M. Yin, On parabolic Volterra equations in several space dimensions, SIAM J. Math. Anal. 22(6)(1991)1723-1737. https://doi.org/10.1137/0522106
- H. M. Yin, Weak and classical solutions of some nonlinear Volterra integrodifferential equations, Comm. Partial Differential Equations 17(7-8)(1992)1369-1385. https://doi.org/10.1080/03605309208820889
- H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u), Arch. Ration. Mech. Anal. 51(1973)371-386.
- V. K. Kalantarov, O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types, J. Sov. Math. 10(1978)53-70. https://doi.org/10.1007/BF01109723
- J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford. 28(2)(1977)473-486. https://doi.org/10.1093/qmath/28.4.473
- L. Alfonsi and F.Weissler, Blow up in Rn for a parabolic equation with a damping nonlinear gradient term, Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhauser Boston, Massachusetts, 1992, pp. 1-20.
-
J. N. Zhao, Existence and nonexistence of solutions for
$u_t\;=\;div(\left|{\nabla}\right|^{p-2}{\nabla}u)+f({\nabla}u,\;u,\;x\;t)$ , J. Math. Anal. Appl. 172(1)(1993)130-146. https://doi.org/10.1006/jmaa.1993.1012 - H. A. Levine, S. Park, and J. Serrin, Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type, J. Differential Equations 142(1)(1998)212-229. https://doi.org/10.1006/jdeq.1997.3362
- S. A. Messaoudi, A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy, J. Math. Anal. Appl. 273(1)(2002)243-247. https://doi.org/10.1016/S0022-247X(02)00220-2
- W.J. Liu, M.X. Wang, Blow-up of the solution for a p-Laplacian equation with positive initial energy, Acta. Appl. Math. 103(2008) 141-146. https://doi.org/10.1007/s10440-008-9225-3
- S. A. Messaoudi, Blow-up of solutions of a semilinear heat equation with a Visco-elastic term, Progress in Nonlinear Differential Equations and Their Applications, 64(2005)351-356. https://doi.org/10.1007/3-7643-7385-7_19
- S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320 (2006)902-915. https://doi.org/10.1016/j.jmaa.2005.07.022
- P. Pucci, J. Serrin, Asymptotic stability for nonlinear parabolic systems, Energy Methods in Continuum Mechanics (Oviedo, 1994), Kluwer Academic Publishers, Dordrecht, (1996)66-74.
- E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149(1999)155-182. https://doi.org/10.1007/s002050050171
Cited by
- General decay rate estimates for a semilinear parabolic equation with memory term and mixed boundary condition vol.2014, pp.1, 2014, https://doi.org/10.1186/s13661-014-0197-0