DOI QR코드

DOI QR Code

200 W급 휴대용 고분자 전해질막 연료전지 시스템 개발

Development of a 200 W Portable PEM Fuel Cell System

  • 한훈식 (한국과학기술원 기계공학과) ;
  • 김윤호 (서울시립대학교 기계정보학과) ;
  • 조창환 (LG전자 CAC연구소) ;
  • 김서영 (한국과학기술연구원 에너지메카닉스센터) ;
  • 현재민 (한국과학기술원 기계공학과)
  • Han, Hun-Sik (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yun-Ho (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Cho, Chang-Hwan (CAC Laboratory, LG Electronics) ;
  • Kim, Seo-Young (Energy Mechanics Center, Korea Institute of Science and Technology) ;
  • Hyun, Jae-Min (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2011.08.08
  • 발행 : 2012.02.10

초록

A 200 W portable polymer electrolyte membrane fuel cell (PEMFC) system is developed. The PEMFC system consists of an air-cooled fuel cell stack module, a fuel supply subsystem, a power management subsystem, and a control electronics subsystem. The control logic is designed for the stable system operation. The system-level performance evaluation discloses that the present PEMFC system provides a rated power output of 200.5 W at 13.4 V with the maximum balance-of-plant (BOP) efficiency of 72%, and maximum system efficiency based on lower heating value (LHV) is 37% at 120.7 W system power output.

키워드

참고문헌

  1. OʼHayre, R., Cha, S. W., Colella, W., and Prinz, F. B., 2006, Fuel Cell Fundamentals, John Wiley and Sons Inc., New York.
  2. Larminie, A., 2003, Fuel Cell Systems Explained, second ed., John Wiley and Sons Ltd., Chichester.
  3. Chu, D., Jiang, R., Gradner, K., Jacobs, R., Schmidt, J., Quakenbush, T., and Stephens, J., 2001, Polymer electrolyte membrane fuel cells for communication applications, J. Power Sources, Vol. 96, pp. 174-178. https://doi.org/10.1016/S0378-7753(01)00567-5
  4. Tuber, K., Zobel, M., Schmidt, H., and Hebling, C., 2003, A polymer electrolyte membrane fuel cell system for powering portable computers, J. Power Sources, Vol. 122, pp. 1-8. https://doi.org/10.1016/S0378-7753(03)00428-2
  5. Oszcipok, M., Zedda, M., Hesselmann, J., Huppmann, M., Wodrich, M., Junghardt, M., and Hebling, C., 2006, Portable proton exchange membrane fuel-cell systems for outdoor applications, J. Power Sources, Vol. 157, pp. 666-673. https://doi.org/10.1016/j.jpowsour.2006.01.005
  6. Chang, H. P., Chou, C. L., Chen, Y. S., Hou, T. I., and Weng, B. J., 2007, The design and cost analysis of a portable PEMFC UPS system, Int. J. Hydrogen Energy, Vol. 32, pp. 316-322. https://doi.org/10.1016/j.ijhydene.2006.04.010
  7. Santa Rosa, D. T., Pinto, D. G., Silva, V. S., Silva, R. A., and Rangel, C. M., 2007, High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions, Int. J. Hydrogen Energy, Vol. 32, pp. 4350- 4357. https://doi.org/10.1016/j.ijhydene.2007.05.042
  8. Wu, J., Galli, S., Lagana, I., Pozio, A., Monteleone, G., Yuan, X. Z., Martin, J., and Wang, H., 2009, An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow, J. Power Sources, Vol. 188, pp. 199-204. https://doi.org/10.1016/j.jpowsour.2008.11.078
  9. Nguyen, T. V. and Knobbe, M. W., 2003, A liquid water management strategy for PEM fuel cell stacks, J. Power Sources, Vol. 114, pp. 70-79. https://doi.org/10.1016/S0378-7753(02)00591-8
  10. Jossen, A., Garche, J., Doering, H., Goetz, M., Knaupp, W., and Joerissen, L., 2005, Hybrid systems with lead-acid battery and protonexchange membrane fuel cell, J. Power Sources, Vol. 144, pp. 395-401. https://doi.org/10.1016/j.jpowsour.2004.11.010