DOI QR코드

DOI QR Code

The characteristic of InGaN/GaN MQW LED by different diameter in selective area growth method

선택성장영역 크기에 따른 InGaN/GaN 다중양자우물 청색 MOCVD-발광다이오드 소자의 특성

  • Bae, Seon-Min (Department of Applied Sciences, Korea Maritime University) ;
  • Jeon, Hun-Soo (Department of Applied Sciences, Korea Maritime University) ;
  • Lee, Gang-Seok (Department of Applied Sciences, Korea Maritime University) ;
  • Jung, Se-Gyo (Department of Applied Sciences, Korea Maritime University) ;
  • Yoon, Wi-Il (Department of Applied Sciences, Korea Maritime University) ;
  • Kim, Kyoung-Hwa (Department of Applied Sciences, Korea Maritime University) ;
  • Yang, Min (Department of Applied Sciences, Korea Maritime University) ;
  • Yi, Sam-Nyung (Department of Applied Sciences, Korea Maritime University) ;
  • Ahn, Hyung-Soo (Department of Applied Sciences, Korea Maritime University) ;
  • Kim, Suck-Whan (Department of Physics, Andong National University) ;
  • Yu, Young-Moon (Pukyong National University LED-Marine Convergence Technology R&BD Center) ;
  • Ha, Hong-Ju (CS Solution Co., Ltd.)
  • 배선민 (한국해양대학교 응용과학과) ;
  • 전헌수 (한국해양대학교 응용과학과) ;
  • 이강석 (한국해양대학교 응용과학과) ;
  • 정세교 (한국해양대학교 응용과학과) ;
  • 윤위일 (한국해양대학교 응용과학과) ;
  • 김경화 (한국해양대학교 응용과학과) ;
  • 양민 (한국해양대학교 응용과학과) ;
  • 이삼녕 (한국해양대학교 응용과학과) ;
  • 안형수 (한국해양대학교 응용과학과) ;
  • 김석환 (안동대학교 물리학과) ;
  • 유영문 (부경대학교 산학협력단 LED-해양융합기술연구센터) ;
  • 하홍주 (CSsol(주))
  • Received : 2011.10.12
  • Accepted : 2011.11.11
  • Published : 2012.02.29

Abstract

In general, the fabrications of the LEDs with mesa structure are performed grown by MOCVD method. In order to etch and separate each chips, the LEDs are passed the RIE and scribing processes. The RIE process using plasma dry etching occur some problems such as defects, dislocations and the formation of dangling bond in surface result in decline of device characteristic. The SAG method has attracted considerable interest for the growth of high quality GaN epi layer on the sapphire substrate. In this paper, the SAG method was introduced for simplification and fabrication of the high quality epi layer. And we report that the size of selective area do not affect the characteristics of original LED. The diameter of SAG circle patterns were choose as 2500, 1000, 350, and 200 ${\mu}m$. The SAG-LEDs were measured to obtain the device characteristics using by SEM, EL and I-V. The main emission peaks of 2500, 1000, 350, and 200 ${\mu}m$ were 485, 480, 450, and 445 nm respectively. The chips of 350, 200 ${\mu}m$ diameter were observed non-uniform surface and resistance was higher than original LED, however, the chips of 2500, 1000 ${\mu}m$ diameter had uniform surface and current-voltage characteristics were better than small sizes. Therefore, we suggest that the suitable diameter which do not affect the characteristic of original LED is more than 1000 ${\mu}m$.

일반적으로 mesa 구조의 발광다이오드 제작은 MOCVD법으로 수행되고 있다. 특히 개개의 발광다이오드 칩을 식각하고 분리하기 위해서 발광다이오드는 반응성이온식각(RIE)공정과 절단(scribing) 공정을 거치게 된다. 플라즈마를 이용한 건식식각공정인 RIE 공정은 결함, 전위, 표면의 댕글링 본드 형성과 같은 몇 가지 문제점을 유발하고, 이러한 이유로 인해 소자 특성을 저하시킨다. 선택영역성장법은 사파이어 기판 위에 고품질의 GaN 에피층을 성장시키는 방법으로써 주목받고 있다. 본 논문에서는 고품질의 막을 제작하고 공정을 간소화하기 위해서 선택영역성장법을 도입하였고, 기존의 발광다이오드 특성에 영향을 주지 않는 선택영역의 크기를 규정하고자 한다. 실험에 사용된 원형의 선택성장영역의 직경크기는 2500, 1000, 350, 200 ${\mu}m$이고, 선택성장 된 발광다이오드의 소자 특성을 얻고자 SEM, EL, I-V 측정을 시행하였다. 주된 발광파장의 위치는 직경크기 2500, 1000, 350, 200 ${\mu}m$에서 각각 485, 480, 450, 445 nm로 측정되었다. 직경 350, 200 ${\mu}m$에서는 불규칙한 표면과 기존 발광다이오드보다 높은 저항 값을 얻을 수 있었지만, 직경 2500, 1000 ${\mu}m$에서는 평탄한 표면과 앞서 말한 350, 200 ${\mu}m$의 특성보다 우수한 전류-전압 특성을 얻을 수 있었다. 이러한 결과들로 기존 발광다이오드의 특성에 영향을 주지 않는 적당한 선택성장 직경크기는 1000 ${\mu}m$ 이상임을 확인하였다.

Keywords

References

  1. J.C. Wang, C.H. Fang, Y.F. Wu, W.J. Chen, D.C. Kuo, P.L. Fan, J.A. Jiang and T.E. Nee, "The effect of junction temperature on the optoelectrical properties of InGaN/GaN multiple quantum well light-emitting diodes", Journal of Luminescence 132 (2012) 429. https://doi.org/10.1016/j.jlumin.2011.09.001
  2. H.C. Lee, J.B. Park, J.W. Bae, P.T.T. Thuny, M.C. Yoo and G.Y. Yeom, "Effect of the surface texturing shapes fabricated using dry etching on the extraction efficiency of vertical light-emitting diodes", Solid-State Electronics 52 (2008) 1193. https://doi.org/10.1016/j.sse.2008.05.005
  3. Y.S. Wang, N.C. Chen, C.Y. Lu and J.F. Chen, "Optical joint density of states in InGaN/GaN based multiplequantum-well light-emitting diodes", Physica B: Condensed Matter 406 (2011) 4300. https://doi.org/10.1016/j.physb.2011.08.071
  4. B. Beaumont, S. Haffouz, P. Gibart, M. Leroux, Ph. Lorenzini, E. Calleja and E. Munoz, "Violet GaN based light emitting diodes fabricated by metal organics vapour phase epitaxy", Materials Science and Engineering: B 50 (1997) 296. https://doi.org/10.1016/S0921-5107(97)00193-1
  5. C. Wetzel, M. Zhu, J. Senawiratne, T. Detchprohm, P. D. Persans, L. Lin, E.A. Preble and D. Hanser, "Lightemitting diode development on polar and non-polar GaN substrates", Journal of Crystal Growth 310 (2008) 3987. https://doi.org/10.1016/j.jcrysgro.2008.06.028
  6. R.J. Shul, L. Zhang, A.G. Baca, C.G. Willison, J. Han, S.J. Pearton, F. Ren, J.C. Zolper and L.F. Lester, "Highdensity plasma-induced etch damage of GaN", Materials Research Society 573 (2000) 271.
  7. H.Y. Shin, S.K. Kwon, Y.I. Chang, M.J. Cho and K.H. Park, "Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate", Journal of Crystal Growth 311 (2009) 4167. https://doi.org/10.1016/j.jcrysgro.2009.07.023
  8. Y. Cordier, F. Semond, J.C. Moreno, E. Fragssinet, B. Benbakhti, Z. Cao, S. Chenot, L. Nguyen, O. Tottereau, A. Soltani and K. Blary, "Selective area growth of GaNbased structures by molecular beam epitaxy on micrometer and nanometer size patterns", Materials Science in Semiconductor Processing 12 (2009) 16. https://doi.org/10.1016/j.mssp.2009.07.003
  9. J. Tourret. O. Gourmala, Y. Andre, A. Trassoudaine, E. Gil, D. Castelluci and R. Cadoret, "A complete crystallographic study of GaN epitaxial morphologies in selective area growth by hydride vapour phase epitaxy (SAG-HVPE)", Journal of Crystal Growth 311 (2009) 1460. https://doi.org/10.1016/j.jcrysgro.2009.01.082
  10. X.J. Chen, J.S. Hwang, G.P. Merceroz, S. Landis, B. Martin, D.L.S. Dang, J. Eymery and C. Durand, "Waferscale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate", Journal of Crystal Growth 322 (2011) 15. https://doi.org/10.1016/j.jcrysgro.2011.03.007
  11. K. Hiruma, T. Haga, K. Kapolnek, A.C. Abara, H. Masui, L.A. Coldren, U.K. Mishra and S.P. DenBaars, "Surface migration and reaction mechanism during selective growth of GaAs and AlAs by metalorganic chemical vapor deposition", Journal of Crystal Growth 102 (1990) 717. https://doi.org/10.1016/0022-0248(90)90836-A
  12. T.S. Oh, K.J. Lee and K.Y. Lim, "Selective area growth and properties of truncated-pyramid InGaN/GaN MQW structure on Si(111) substrate with various filling ratios", Journal of the Korean Physical Society 49 (2006) S745.
  13. K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika and T. Maeda, "Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)", Journal of Crystal Growth 221 (2000) 316. https://doi.org/10.1016/S0022-0248(00)00707-7
  14. P.G. Eliseeev, P. Perlin, J. Lee and M. Osinski, "Blue temperature-induced shift and band-tail emission in InGaN-based light sources", Applied Physics Letter 71 (1997) 569. https://doi.org/10.1063/1.119797
  15. Y.H. Cho, G.H. Gainer, A.J. Fisher, J.J. Song, S. Keller, U.K. Mishra and S.P. DenBaars, "S-shaped temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells", Applied Physics Letter 73 (1998) 1370. https://doi.org/10.1063/1.122164
  16. C.H. Qiu, C. Hoggatt, W. Melton, M.W. Leksono and J.I. Pankove, "Study of defect state in GaN films by photoconductivity measurement", Applied Physics Letter 66 (1995) 2712. https://doi.org/10.1063/1.113497