참고문헌
- M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas : Fundamentals and Applications, Volume 1, Plenum Press, New York and London,1994.
- P. Fauchais and A. Vardelle, "Thermal plasmas," IEEE Trans. Plasma Sci., 25, 1258 (1997). https://doi.org/10.1109/27.650901
- Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin Heidelberg,1991.
- E. Pfender, "Thermal Plasma Technology: Where Do We Stand and Where Are We Going?," Plasma Chem. Plasma Process., 19(1), 1 (1999) https://doi.org/10.1023/A:1021899731587
- M. I. Boulos, "The inductively coupled R.F. (radio frequency) plasma," Pure & Appl. Chem. 57, 1321 (1985). https://doi.org/10.1351/pac198557091321
- J. Heberlein, "New approaches in thermal plasma technology," Pure & Appl. Chem., 74(3), 327 (2002). https://doi.org/10.1351/pac200274030327
- B. Pateyron, M. F. Elchinger, G. Delluc and P. Fauchais, "Sound Velocity in Different Reacting Thermal Plasma Systems," Plasma Chem. Plasma Process., 16(1), 39 (1996). https://doi.org/10.1007/BF01465216
- T. Yoshida, "The future of thermal plasma processing," Mater. T. JIM, 31(1), 1 (1990) https://doi.org/10.2320/matertrans1989.31.1
- P. R. Taylor and S. A. Pirzada, "Thermal Plasma Processing of Materials: A Review," Adv. Perform. Mater., 1, 35 (1994). https://doi.org/10.1007/BF00705312
- P. Fauchais, A. Vardelle and A. Denoirjean, "Reactive thermal plasmas: ultrafine particle synthesis and coating deposition," Surf. Coat. Tech. 97, 66 (1997). https://doi.org/10.1016/S0257-8972(97)00294-6
- D. Vollath, "Plasma synthesis of nanopowders," J. Nanopart. Res., 10, 39 (2008). https://doi.org/10.1007/s11051-008-9427-7
- J. R. Fincke, W. D. Swank, S. C. Snyder and D. C. Haggard, "Enthalpy probe performance in compressible thermal plasma jets", Rev. Sci. Instrum., 64(12), 3585 (1993). https://doi.org/10.1063/1.1144285
- M. Rahmane, G. Soucy and M. I. Boulos, "Analysis of the enthalpy probe technique for thermal plasma diagnostics", Rev. Sci. Instrum., 66(6), 3424 (1995). https://doi.org/10.1063/1.1145517
- S. Choi, T. H. Hwang, J. H. Seo, D. U. Kim and S. H. Hong, "Effects of Anode Nozzle Geometry on Ambient Air Entrainment Into Thermal Plasma Jets Generated by Nontransferred Plasma Torch," IEEE Trans. Plasma Sci., 32(2) (2004).
- J. H. Park and S. H. Hong, "Optimization analysis of an inductively coupled torch for material processing by using local thermal equilibrium numerical analysis," J. Kor. Phys. Soc., 31, 753 (1997).
- M. Rahmane, G. Soucy and M. I. Boulos, "Diffusion phenomena of a cold gas in thermal plasma stream," J. Plasma Chem. Plasma Proces., 16, 169S (1996).
- R. Ye, P. Proulx and M. I. Boulos, "Turbulence phenomena in the radio frequency induction plasma torch," Int. J. Heat Mass Trans., 42, 1585 (1999). https://doi.org/10.1016/S0017-9310(98)00260-9
- Ph. Buffat and J. P. Borel, "Size effect on the melting temperature of gold partlcles," Phys. Rev. A, 13, 2287 (1976) https://doi.org/10.1103/PhysRevA.13.2287
- Ed. by C. Corti and R. Holliday, Gold : science and applications, CRC Press Taylor & Francis Group, New-York, 2010.
- Ed. by D. L. Feldheim and C.A. Foss. Jr., Metal Nanoparticles : Synthesis, Characterization, and Applications, Marcel Dekker Inc., New York, Basel, 2010.
- Y. L. Lee, J. W. Joung and K. J. Lee, Method for manufacturing nickel nanoparticles, US Patent 7648556 B2.
- S. Ohno and M. Uda, "Generation rate of ultrafine metal particles in hydrogen plasma - metal reaction," J, Jpn. Insl. Met., 48, 640 (1984). (Japanese) https://doi.org/10.2320/jinstmet1952.48.6_640
- A. M. Fudoligh, H. Nogami and J. Yagi, "Prediction of generation rates in 'reactive arc plasma' ultrafine powder production process, ISIJ Int., 37, 641 (1997) https://doi.org/10.2355/isijinternational.37.641
- M. Uda, S. Ohno and T. Hoshi, Process for production fine metal particles, US Patent 4376740.
- M. Uda, S. Ohno and H. Okuyama, Process for production particles of ceramic, US Patent 4889665.
- T. Araya, Y. Ibaraki, Y. Endo, S. Hioki and M. Kanamaru, Arc apparatus for producing ultrafine particles, US Patent 4732369.
- M. Shigeta and A. B. Murphy, "Thermal plasmas for nanofabrication," J. Phys. D: Appl. Phys., 44, 174025 (2011) https://doi.org/10.1088/0022-3727/44/17/174025
- S. H. Lee, S. M. Oh and D. W. Park, "Preparation of silver nanopowder by thermal plasma," Mater. Sci. Eng. C, 27, 1286 (2007) https://doi.org/10.1016/j.msec.2006.08.010
- M. Ogawa and S. Abe, Method for making ultra-fine ceramic particles, US Patent 4610857.
- S. Kumara, V. Selvarajan, P.V.A. Padmanabhan and K.P. Sreekumar, "Spheroidization of metal and ceramic powders in thermal plasma jet: Comparison between experimental results and theoretical estimation," J. Mater. Process. Tech., 176, 87 (2006) https://doi.org/10.1016/j.jmatprotec.2006.02.023
- H. P. Li and E. Pfender, "Three Dimensional Modeling of the Plasma Spray Process," J. Thermal Spray Technol., 16, 245 (2007) https://doi.org/10.1007/s11666-007-9023-x
- M. Vardelle, C. Trassy, A. Vardelle and P. Fauchais, "Experimental Investigation of Powder Vaporization in Thermal Plasma Jets," Plasma Chem. Plasma Process., 11, 185 (1991) https://doi.org/10.1007/BF01447242
- R. M. Young and E. Pfender, "Generation and Behavior of Fine Particles in Thermal Plasmas - A Review," Plasma Chem. Plasma Process., 5, 1 (1985) https://doi.org/10.1007/BF00567907
- M. I. Boulos, J. Jurewicz and J. Guo, Induction plasma synthesis of nanopowders, US patent 8013269 B2.
- S. L. Girshick, C. P. Chiu, R. Muno, C. Y. Wu, L. Yang, S. K. Singh, and P.H. McMurry, "Thermal Plasma Synthesis of Ultrafine Iron Particles," J. Aerosol Sci., 24, 367 (1993) https://doi.org/10.1016/0021-8502(93)90009-X
- P. Proulx, J. Mostaghimi and M. I. Boulos, "Plasma - Particle Interaction Effects in Induction Plasma Modeling Under Dense Loading Conditions," Int. J. Heat Mass Transfer, 28, 1327 (1985). https://doi.org/10.1016/0017-9310(85)90163-2
- P. Proulx, J. Mostaghimi, and M. I. Boulos, "Heating of Powders in r.f. Inductively Coupled Plasma under Dense Loading Conditions," Plasma Chem. Plasma Process., 7, 29 (1987). https://doi.org/10.1007/BF01015998
- www.tekna.com
- M. Shigeta, T. Watanabe and H. Nishiyama, "Numerical investigation for nano-particle synthesis in an RF inductively coupled plasma," Thin Solid Films, 457, 192 (2004). https://doi.org/10.1016/j.tsf.2003.12.020
- S. Son, M. Taheri, E. Carpenter, V. G. Harris and M. E. McHenry, "Synthesis of ferrite and nickel ferrite nanoparticles using radiofrequency thermal plasma torch," J. Appl. Phys., 91, 7589 (2002) https://doi.org/10.1063/1.1452705
- J. H. Seo, D. U. Kim, J. S. Nam, S. H. Hong, S. B. Sohn and S. M. Song, "Radio Frequency Thermal Plasma Treatment for Size Reduction and Spheroidization of Glass Powders Used in Ceramic Electronic Devices," J. Am. Ceram. Soc., 90, 1717 (2007).
- D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli and T. Trombetti, "3-D Numerical Analysis of Powder Injection in Inductively Coupled Plasma Torches" IEEE Trans. Plasma Sci., 33, 424 (2005). https://doi.org/10.1109/TPS.2005.845323
- R. Ye, P. Proulx and M. I. Boulos, "Particle Turbulent Dispersion and Loading Effects in an Inductively Coupled Radio Frequency Plasma," J. Phys. D, Appl. Phys., 33, 2154 (2000). https://doi.org/10.1088/0022-3727/33/17/310
- M. Rahmane, G. Soucy and M. I. Boulos, "Mass transfer in induction plasma reactors," Int. J. Heat Mass Transfer, 32, 2035 (1994).
- N.Y. Mendoza-Gonzalez, B.M. Goortani and P. Proulx, "Numerical simulation of silica nanoparticles production in an RF plasma reactor: effect of quench," Mater. Sci. Eng. C, 27, 1267 (2007)
- N.Y. Mendoza-Gonzalez, M.El. Morsli and P. Proulx, "Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Coalescence and Fractal Aggregation" J. Therm. Spray Technol., 17, 533 (2008) https://doi.org/10.1007/s11666-008-9209-x
- D. Harbec, F. Gitzhofer and A. Tagnit-Hamou, "Induction plasma synthesis of nanometric spheroidized glass powder for use in cementitious materials," Powder Technol., 214, 356 (2011) https://doi.org/10.1016/j.powtec.2011.08.031
- P. Bushier, H. Schubert, J. Uhlenbusch, and M. Weiss, "Evaporation of Zirconia Powders in a Thermal Radio- Frequency Plasma," J. Thermal Spray Technol., 10, 666 (2001) https://doi.org/10.1361/105996301770349196
- K. Kawajiri, J. H. Seo, N. Sato, S. H. Hong, and H. Nishiyama, "In-Flight Treatment of Titanium Dioxide Nano Particles Using a DC-RF Hybrid Plasma Flow System"; pp. 32 - 33 in CD-Proceedings of 17th International Symposium on Plasma Chemistry, Toronto, Canada, August 7 - 12, 2005, Edited by J. Mostaghimi. International Plasma Chemistry Society
- T. Ishigaki, Y. Bando, Y. Moriyoshi, and M. I. Boulos, "Deposition from the Vapor Phase During the Induction Plasma Treatment of Alumina Powders," J. Mater. Sci., 28, 4223 (1993). https://doi.org/10.1007/BF00351258
- H. Nishiyama, M. Onodera, J. Igawa and T. Nakajima, "Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power," J. Thermal Spray Technol., 18 (4), 593 (2009) https://doi.org/10.1007/s11666-009-9358-6
-
B. M. Goortani, N.Y. Mendoza-Gonzalez and P. Proulx, "Synthesis of
$SiO_{2}$ Nanoparticles in RF Plasma Reactors: Effect of Feed Rate and Quench Gas Injection," Int. J. Chem. React. Eng., 4, A33 (2006). - B. Bora, N. Aomoa R. K. Bordoloi, D. N. Srivastava, H. Bhuyan, A.K. Das and M. Kakati, "Free-flowing, transparent g-alumina nanoparticles synthesized by a supersonic thermal plasma expansion process," Curr. Appl. Phys. doi:10.1016 /j.cap.2011.12.001 (2012)
- M. Kakati, B. Bora, S. Sarma, B.J. Saikia, T. Shripathi, U. Deshpande, A. Dubey, G. Ghosh and A.K. Das, "Synthesis of titanium oxide and titanium nitride nanoparticles with narrow size distribution by supersonic thermal plasma expansion," Vacuum, 82, 833 (2008) https://doi.org/10.1016/j.vacuum.2007.11.014
- B. Bora, B.J. Saikia, C. Borgohain, M. Kakati and A.K. Das, "Numerical investigation of nanoparticle synthesis in supersonic thermal plasma expansion," Vacuum, 85, 283 (2010) https://doi.org/10.1016/j.vacuum.2010.06.008
- Ed. by R. d'Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato and F. Arefi-Khonsari, Advanced Plasma Technology, Wiley-VCH GmbH & CO., Weinheim, 2008.
- T. W. Ebbensen and P. M. Ajayan, "Large-scale synthesis of carbon nanotubes," Nature, 358, 220 (1992). https://doi.org/10.1038/358220a0
- S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, 363, 603 (1993). https://doi.org/10.1038/363603a0
- Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow and S. Iijima, "Mass production of single-wall carbon nanotubes by the arc plasma jet method," Chem. Phys. Lett. 323, 580 (2000). https://doi.org/10.1016/S0009-2614(00)00556-X
- Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue and S. L. Zhang, "Large scale synthesis of single-wall carbon nanotubes by arc-discharge method," J. Phys. Chem. Solids, 61, 1031 (2000). https://doi.org/10.1016/S0022-3697(99)00358-3
- S.I. Choi, J.S. Nam, J.I. Kim, T.H. Hwang, J.H. Seo and S.H. Hong, "Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma," Thin Solid Films, 506- 507, 244 (2006) https://doi.org/10.1016/j.tsf.2005.08.022
- M. Bystrzejewski, A. Huczko, H. lange, W. W. PLotczyk, R. Stankiewicz, T. Pichler, T. Gemming and M.H.Rummeli, "A continuous synthesis of carbon nanotubes by dc thermal plasma jet," Appl. Phys. A, 91, 223 (2008) https://doi.org/10.1007/s00339-008-4400-y
- K. S. Kim, A. Moradian, J. Mostaghimi, Y. Alinejad, A. Shahverdi, B. Simard and G. Soucy, "Synthesis of Single- Walled Carbon Nanotubes by Induction Thermal Plasma," Nano Res., 2,800 (2009) https://doi.org/10.1007/s12274-009-9085-9
- K. S. Kim, G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy, "Large-scale production of singlewalled carbon nanotubes by induction thermal plasma," J. Phys. D: Appl. Phys., 40, 2375 (2007) https://doi.org/10.1088/0022-3727/40/8/S17
- B. Geir and M. Homer, Plasma preparation of Carbon Balck, US Patent 3409403 (1968).
- W. R. Norman, Production of Carbon Black Using Plasma-Heated Nitrogen, US Patent 3409403 (1969).
- L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei and X. Bourrat, "Plasma processing: A step toward the production of new grades of carbon black," Carbon, 40, 169 (2002). https://doi.org/10.1016/S0008-6223(01)00169-5
- F. Fabry. G. Flamant and L. Fulcheri, "Carbon black processing by thermal plasma. analysis of the particle formation mechanism," Chem. Eng. Sci., 56, 2123 (2001). https://doi.org/10.1016/S0009-2509(00)00486-3
- K. S. Kim, J. H. Seo, J. S. Nam, W. T. Ju and S. H. Hong, "Production of Hydrogen and Carbon Black by Methane Decomposition Using DC-RF Hybrid Thermal Plasmas," IEEE Trans. Plasma Sci. 33(2), 813 (2005). https://doi.org/10.1109/TPS.2005.844526
- S. I. Choi, J. S. Nam and J. H. Seo, "Formation of carbon black by thermal plasma decomposition of methane," J. Environmental & Thermal Eng., 8(3), 1 (2011) (Korean)
- K. P. Sreekumar, M. Vijay, T. K. Thiyagarajan, K. Krishnan and P. V. Ananthapadmanabhan, "Reactive Plasma Synthesis of Nanocrystalline Ceramic Oxides," J. Phys.: Conf. Ser., 208 012123 (2010). https://doi.org/10.1088/1742-6596/208/1/012123
- S. M. Oh and D. W. Park, "Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet," Korean J. Chem. Eng., 17(3), 299 (2000) https://doi.org/10.1007/BF02699044
-
J. Y. Guo, F. Gitzhofer, M. I. Boulos, "Induction plasma synthesis of ultrafine SiC powders from silicon and
$CH_{4}$ ," J. Mater. Sci., 30, 5589 (1995). https://doi.org/10.1007/BF00356691 - F. Gitzhofer, "Induction plasma synthesis of ultrafine SiC," Pure & Appl. Chem., 68, 1113 (1996). https://doi.org/10.1351/pac199668051113
- L. Tong and R. G. Reddy, "Synthesis of titanium carbide nano-powders by thermal plasma," Scripta Mater., 52, 1253 (2005). https://doi.org/10.1016/j.scriptamat.2005.02.033
- E. Bouyer, M. Muller, R. H. Henne and G. Schiller, "Thermal plasma processing of nanostructured Si-based ceramic materials," J. Nanopar. Res., 3, 373 (2001)
- M. Leparoux, C. Schreuders, J. W. Shin and S. Siegmann, "Induction Plasma Synthesis of Carbide Nanopowders," Adv. Eng. Mater., 7, 349 (2005). https://doi.org/10.1002/adem.200500046
- H. Ahn, M. Hur and S. H. Hong, "Synthesis of ultra-fine powders of aluminum nitride by DC plasma spray," J. Korean Surface Technology, 29(6), 73 (1996) (Korean)
- S. M. Oh and D. W. Park, "Preparation of AlN fine powder by thermal plasma processing," Thin Solid Films, 316, 189 (1998) https://doi.org/10.1016/S0040-6090(98)00413-1
-
Y. H. Hu, "Solid-solution catalysts for
$CO_{2}$ reforming of methane," Catal. Today, 148, 206 (2009) https://doi.org/10.1016/j.cattod.2009.07.076 - E. Ruckenstein and Y. H. Hu, "Carbon dioxide reforming of methane over nickel/ alkaline earth metal oxide catalysts," Appl. Catal. A: Gen., 133, 149 (1995). https://doi.org/10.1016/0926-860X(95)00201-4
- B. C. Enger, R. Lodeng and A. Holman, "A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts," Appl. Catal. A: Gen., 346, 1 (2008). https://doi.org/10.1016/j.apcata.2008.05.018
- K.O. Christenson, D. Chen, R. Lodeng and A. Holman, "Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming," Appl. Catal. A: Gen., 314, 9 (2006) https://doi.org/10.1016/j.apcata.2006.07.028
- J. H. Seo, M. Y. Lee and J. S. Kim, "Preparation of NiO-MgO solid solution nano-catalysts for partial oxidation of methane by RF (Radio Frequency) thermal plasma," Surf. Coat. Tech. (submitted).
- H. Zea, C. K. Chen, K. Lester, A. Phillips, A. Daty, I. Fonseca and J. Phillips, "Plasma torch generation of carbon supported metal catalysts," Catal. Today, 89, 237 (2004) https://doi.org/10.1016/j.cattod.2003.11.033
- G. P. Vissokov, "Some peculiarities of nano-dispersed catalysts synthesized or regenerated in an arc plasma conditions," Catal. Today, 89, 245 (2004) https://doi.org/10.1016/j.cattod.2003.11.034
- K. Nishimura, T. Fujii, K. Yubuta and S. Shinozaki, Process for producing oxide coated fine metal particles, US Patent 6582763 B1
- K. Nishimura, T. Fujii, K. Yubuta and S. Shinozaki, Fine glass particle containing embedded oxide and process for producing the same, US Patent 6578381 B2
- Y. Saito, "Nanoparticles and filled nanocapsules," Carbon, 33, 979 (1995) https://doi.org/10.1016/0008-6223(95)00026-A
- Z. Wei, L. Liu, H. Yang, C. Zhang and W. Feng, "Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma," Trans. Nonferrous Met. Soc. China, 21, 2026 (2011) https://doi.org/10.1016/S1003-6326(11)60967-9
- T. Oku, T. Kusunose, T. Hirata, R. Hatakeyama, N. Sato, K. Niihara and K. Suganuma, "Formation and structure of Ag, Ge and SiC nanoparticles encapsulated in boron nitride and carbon nanocapsules," Diam. Relat. Mater., 9, 911 (2000) https://doi.org/10.1016/S0925-9635(99)00214-9
- M. Y. Lee, J. S. Kim and J. H. Seo, "RF thermal plasma synthesis of nano-sized IZTO (Indium Zinc Tin Oxide) powders," Thin Solid Films, (submitted)
피인용 문헌
- Effect of carrier gas composition on transferred arc metal nanoparticle synthesis vol.15, pp.1, 2013, https://doi.org/10.1007/s11051-012-1400-9
- Preparation of Carbon-Doped TiO2 Nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System vol.22, pp.6, 2013, https://doi.org/10.1007/s11666-013-9941-8
- Numerical Analysis on RF (Radio-frequency) Thermal Plasma Synthesis of Nano-sized Ni Metal vol.26, pp.5, 2013, https://doi.org/10.4313/JKEM.2013.26.5.401
- Gliding Arc Plasma Synthesis of Crystalline TiO2 Nanopowders with High Photocatalytic Activity vol.33, pp.5, 2013, https://doi.org/10.1007/s11090-013-9470-8
- Synthesis of Single-Phase Gd-Doped Ceria Nanopowders by Radio Frequency Thermal Plasma Treatment vol.97, pp.5, 2014, https://doi.org/10.1111/jace.12918
- A review on the methods of preparation of elemental boron vol.10, pp.3, 2015, https://doi.org/10.1002/apj.1892
- Synthesis of Copper Particles by Non-thermal Atmospheric Pressure Plasma Jet vol.12, pp.8, 2015, https://doi.org/10.1002/ppap.201400197
- Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor vol.17, pp.10, 2015, https://doi.org/10.1007/s11051-015-3222-z
- and ZnO vol.54, pp.6, 2015, https://doi.org/10.7567/JJAP.54.065201
- Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering vol.60, pp.7, 2015, https://doi.org/10.1179/1743280415Y.0000000005
- Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells vol.30, pp.9, 2016, https://doi.org/10.1177/0885328216629822
- In situ measurement of the two-dimensional temperature field of a dual-jet direct-current arc plasma vol.87, pp.3, 2016, https://doi.org/10.1063/1.4942965
- -Ar plasma system vol.24, pp.6, 2017, https://doi.org/10.1063/1.4985304
- Design-Oriented Modelling of Different Quenching Solutions in Induction Plasma Synthesis of Copper Nanoparticles vol.37, pp.3, 2017, https://doi.org/10.1007/s11090-016-9779-1
- Tungsten Micropowder/Copper Nanoparticle Core/Shell-Structured Composite Powder Synthesized by Inductively Coupled Thermal Plasma Process vol.48, pp.1, 2017, https://doi.org/10.1007/s11661-016-3849-0
- Physical and Chemical Processes Research of Isotope Separation in Plasma under Magnetic Field vol.880, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.880.128
- Metal Oxide Nanopowder Production by Evaporation– Condensation Using a Focused Microwave Radiation at a Frequency of 24 GHz vol.6, pp.1, 2015, https://doi.org/10.1115/1.4032015
- Plasma processes in the preparation of lithium-ion battery electrodes and separators vol.50, pp.16, 2017, https://doi.org/10.1088/1361-6463/aa6245
- Modeling of a transferred arc inside a crucible with gas injection through a hollow cathode vol.51, pp.30, 2018, https://doi.org/10.1088/1361-6463/aacd5c
- Numerical Analysis on the Electrical and Thermal Flow Characteristics of Ar-N2 Inductively Coupled Plasma Torch System vol.72, pp.7, 2018, https://doi.org/10.3938/jkps.72.755
- Influence of the Shroud Gas Injection Configuration on the Characteristics of a DC Non-transferred Arc Plasma Torch vol.38, pp.4, 2018, https://doi.org/10.1007/s11090-018-9890-6
- Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials vol.125, pp.7, 2019, https://doi.org/10.1063/1.5060977
- Review on Plasma Atomizer Technology for Metal Powder vol.269, pp.2261-236X, 2019, https://doi.org/10.1051/matecconf/201926905004