DOI QR코드

DOI QR Code

NEW FRONTIERS IN THERMAL PLASMAS FROM SPACE TO NANOMATERIALS

  • Boulos, Maher I. (Tekna Plasma Systems Inc. Professor Emerit, University of Sherbrooke Sherbrooke)
  • 투고 : 2012.02.20
  • 발행 : 2012.02.25

초록

Thermal plasma technology has been at the center of major developments over the past century. It has found numerous applications ranging from aerospace materials testing to nanopowder synthesis and processing. In the present review highlights of principal breakthroughs in this field are presented with emphasis on an analysis of the basic phenomena involved, and the potential of the technology for industrial scale applications.

키워드

참고문헌

  1. M.I. Boulos, P. Fauchais and E. Pfender, "Thermal Plasmas - Fundamentals and Applications", Plenum Press, Vol. 1 (1994).
  2. M.I. Boulos, "Radio frequency plasma developments, scaleup and industrial applications", High Temp. Chem. Processes 1, 401 (1992).
  3. U.S. Patent # 5 200 595 and International PCT/CA92/ 00156.
  4. M. Rahmane, G. Soucy and M.I. Boulos, "Diffusion phenomena of a cold gas in thermal plasma stream", J. Plasma Chem. Plasma Proc. 16 169S (1996).
  5. M.I. Boulos and E. Pfender, "Material processing with thermal plasmas", MRS Bulletin 8, 65 (1996).
  6. R. Ye et al., "In-flight spheroidization of alumina powders in Ar-$H_{2}$ and Ar-$N_{2}$ induction plasmas", Plasma Chem. Plasma Proc. 24 555 (2004). https://doi.org/10.1007/s11090-004-7932-8
  7. Y.-L. Yi and T. Ishigaki, "Spheroidization of Titanium Carbide Powders by Induction Thermal Plasma Processing", J. Am. Ceram. Soc. 84 1929 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00939.x
  8. N.M. Dignard and M.I. Boulos, "Ceramic and metallic powder spheroidization using induction plasma technology", Proceeding of Thermal Spray: a United Forum for Scientific and Technological Advances; Indianapolis, USA 419 (1998).
  9. I.A. Castillo and R.J. Munz, "Inductively coupled plasma synthesis of $CeO_{2}$-based powders from liquid solutions for SOFC electrolytes", Plasma Chem. Plasma Proc. 25, 87 (2005). https://doi.org/10.1007/s11090-004-8836-3
  10. Y.-L. Yi and T. Ishigaki, "Controlled one-step synthesis of nanocrystalline anatase and rutile $TiO_{2}$ powders by in-flight thermal plasma oxidation", J. Phys. Chem. B 108 15536 (2004).
  11. B.M. Goortani, N. Mendoza and P. Proulx, "Synthesis of $SiO_{2}$ nanoparticles in RF plasma reactors: Effect of feed rate and quench gas injection", Int. J. Chem. Reactor Eng., 4 A33 (2005).
  12. W. Shin et al., "The influence of process parameters on precursor evaporation for alumina nanopowder synthesis in an inductively coupled rf thermal plasma", Plasma Sources Sci. Tech., 15, 441 (2006). https://doi.org/10.1088/0963-0252/15/3/020
  13. F. Gitzhofer, "Induction plasma synthesis of ultrafine SiC", Pure Appl. Chem. 68 1113 (1996). https://doi.org/10.1351/pac199668051113

피인용 문헌

  1. Thermal Plasma Sources: How Well are They Adopted to Process Needs? vol.35, pp.3, 2015, https://doi.org/10.1007/s11090-015-9616-y
  2. The Role of Transport Phenomena and Modeling in the Development of Thermal Plasma Technology vol.36, pp.1, 2016, https://doi.org/10.1007/s11090-015-9660-7
  3. Relationship between powder characteristics and part properties in laser beam melting of Ti–6Al–4V, and implications on quality vol.29, pp.2, 2017, https://doi.org/10.2351/1.4983240
  4. Equivalent circuit and numerical analyses of an inductively coupled plasma torch with a tapped induction coil vol.8, pp.11, 2018, https://doi.org/10.1063/1.5040996