DOI QR코드

DOI QR Code

Photodissociation of C3H5Br and C4H7Br at 234 nm

  • Kim, Hyun-Kook (Department of Chemistry and Center for Functional Materials, Pusan National University) ;
  • Paul, Dababrata (Department of Chemistry and Center for Functional Materials, Pusan National University) ;
  • Hong, Ki-Ryong (Department of Chemistry and Center for Functional Materials, Pusan National University) ;
  • Cho, Ha-Na (Department of Chemistry and Center for Functional Materials, Pusan National University) ;
  • Lee, Kyoung-Seok (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Kim, Tae-Kyu (Department of Chemistry and Center for Functional Materials, Pusan National University)
  • Received : 2011.11.05
  • Accepted : 2011.11.12
  • Published : 2012.01.20

Abstract

The photodissociation dynamics of cyclopropyl bromide ($C_3H_5Br$) and cyclobutyl bromide ($C_4H_7Br$) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonanceenhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent $Br(^2P_{3/2})$ and $Br^*(^2P_{1/2})$ atoms. The recoil anisotropies for the Br and $Br^*$ channels were measured to be ${\beta}_{Br}=0.92{\pm}0.03$ and ${\beta}_{Br^*}=1.52{\pm}0.04$ for $C_3H_5Br$ and ${\beta}_{Br}=1.10{\pm}0.03$ and ${\beta}_{Br^*}=1.49{\pm}0.05$ for $C_4H_7Br$. The relative quantum yield for Br was found to be ${\Phi}_{Br}=0.13{\pm}0.03$ and for $C_3H_5Br$ and $C_4H_7Br$, respectively. The soft radical limit of the impulsive model adequately modeled the related energy partitioning. The nonadiabatic transition probability from the 3A' and 4A' potential energy surfaces was estimated and discussed.

Keywords

References

  1. Molina, M. J.; Rowland, F. S. Nature 1974, 248, 810.
  2. Garcia, R. R.; Solomon, S. J. Geophys. Res. 1994, 99, 12937. https://doi.org/10.1029/94JD00725
  3. Tzeng, W. B.; Lee, Y. R.; Lin, S. M. Chem. Phys. Lett. 1994, 227, 467. https://doi.org/10.1016/0009-2614(94)00837-X
  4. Kim, T. K.; Lee, K. W.; Lee, K. S.; Lee, E. K.; Jung, K. H. Chem. Phys. Lett. 2007, 446, 31. https://doi.org/10.1016/j.cplett.2007.08.044
  5. Zou, P.; McGiven, W. S.; North, S. W. Phys. Chem. Chem. Phys. 2000, 2, 3785. https://doi.org/10.1039/b004349o
  6. Blanchet, V.; Samartzis, P. S.; Wodtke, A. M. J. Chem. Phys. 2009, 130, 034304. https://doi.org/10.1063/1.3058730
  7. Hua, L.; Shen, H.; Zhang, C.; Cao, Z.; Zhang, B. Chem. Phys. Lett. 2008, 460, 50. https://doi.org/10.1016/j.cplett.2008.05.098
  8. Lee, K. S.; Lee, K. W.; Lee, S. K.; Jung, K. H.; Kim, T. K. J. Mol. Spectra. 2008, 249, 43. https://doi.org/10.1016/j.jms.2008.01.010
  9. Paul, D.; Kim, H. K.; Hong, K.; Kim, T. K. Bull. Korean Chem. Soc. 2011, 32, 659. https://doi.org/10.5012/bkcs.2011.32.2.659
  10. Lee, S. K.; Paul, D.; Hong, K.; Cho, H. N.; Jung, K. W.; Kim, T. K. Bull. Korean Chem. Soc. 2009, 30, 2962. https://doi.org/10.5012/bkcs.2009.30.12.2962
  11. Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1999, 110, 832. https://doi.org/10.1063/1.478051
  12. Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1998, 109, 4758. https://doi.org/10.1063/1.477087
  13. Gougousi, T.; Samartzis, P. C.; Kitsopoulos, T. N. J. Chem. Phys. 1998, 108, 5742. https://doi.org/10.1063/1.475984
  14. Mulliken, R. S. J. Chem. Phys. 1940, 8, 382. https://doi.org/10.1063/1.1750671
  15. Kim, T. K.; Park, M. S.; Lee, K. W.; Jung, K. H. J. Chem. Phys. 2001, 115, 10745. https://doi.org/10.1063/1.1419063
  16. Lee, K. W.; Jee, Y. J.; Jung, K. H. J. Chem. Phys. 2002, 115, 4490.
  17. Arnold, P. A.; Cosofret, B. R.; Dylewski, S. M.; Houston, P. L.; Carpenter, B. K. J. Phys. Chem. A 2001, 105, 1693. https://doi.org/10.1021/jp0037504
  18. Freitas, J. E.; Hwang, H. J.; Ticknor, A. B.; Elsayed, M. A. Chem. Phys. Lett. 1991, 183, 165. https://doi.org/10.1016/0009-2614(91)80044-X
  19. Ghazal, A. Y.; Liu, Y.; Wang, Y.; Hu, C.; Zhang, B. Chem. Phys. Lett. 2011, 511, 39. https://doi.org/10.1016/j.cplett.2011.06.014
  20. Park, M. S.; Jung, Y. J.; Lee, S. H.; Kim, D. C.; Jung, K. H. Chem. Phys. Lett. 2000, 322, 429. https://doi.org/10.1016/S0009-2614(00)00467-X
  21. Eppink, A. T. J. B.; Parker, D. H. Rev. Sci. Instrum. 1997, 68, 3477. https://doi.org/10.1063/1.1148310
  22. Zare, R. N.; Herschbach, D. R. Proc. IEEE 1963, 51, 173. https://doi.org/10.1109/PROC.1963.1676
  23. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  24. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  25. Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626. https://doi.org/10.1063/1.1677740
  26. Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3638. https://doi.org/10.1063/1.1677741
  27. Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3655. https://doi.org/10.1063/1.1677742
  28. Amatatsu, Y.; Yabushita, S.; Morokuma, K. J. Chem. Phys. 1996, 104, 9783. https://doi.org/10.1063/1.471758
  29. Mulliken, R. S. J. Chem. Phys. 1935, 3, 513.
  30. McGiven, W. S.; Li, R.; Zou, P.; North, S. W. J. Chem. Phys. 1999, 111, 5771. https://doi.org/10.1063/1.479874
  31. Landau, L. D.; Lifshitz, E. M. Quantum Mechanics 3; Pergamon: New York, 1997.
  32. Felder, P. Chem. Phys. Lett. 1992, 197, 425. https://doi.org/10.1016/0009-2614(92)85795-C
  33. Amatatsu, Y.; Morokuma, K. J. Chem. Phys. 1991, 94, 4858. https://doi.org/10.1063/1.460571

Cited by

  1. Dissociative Ionization and Coulomb Explosion of Molecular Bromocyclopropane in an Intense Femtosecond Laser Field vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123096