Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.1.143

Photodissociation of C3H5Br and C4H7Br at 234 nm  

Kim, Hyun-Kook (Department of Chemistry and Center for Functional Materials, Pusan National University)
Paul, Dababrata (Department of Chemistry and Center for Functional Materials, Pusan National University)
Hong, Ki-Ryong (Department of Chemistry and Center for Functional Materials, Pusan National University)
Cho, Ha-Na (Department of Chemistry and Center for Functional Materials, Pusan National University)
Lee, Kyoung-Seok (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science)
Kim, Tae-Kyu (Department of Chemistry and Center for Functional Materials, Pusan National University)
Publication Information
Abstract
The photodissociation dynamics of cyclopropyl bromide ($C_3H_5Br$) and cyclobutyl bromide ($C_4H_7Br$) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonanceenhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent $Br(^2P_{3/2})$ and $Br^*(^2P_{1/2})$ atoms. The recoil anisotropies for the Br and $Br^*$ channels were measured to be ${\beta}_{Br}=0.92{\pm}0.03$ and ${\beta}_{Br^*}=1.52{\pm}0.04$ for $C_3H_5Br$ and ${\beta}_{Br}=1.10{\pm}0.03$ and ${\beta}_{Br^*}=1.49{\pm}0.05$ for $C_4H_7Br$. The relative quantum yield for Br was found to be ${\Phi}_{Br}=0.13{\pm}0.03$ and for $C_3H_5Br$ and $C_4H_7Br$, respectively. The soft radical limit of the impulsive model adequately modeled the related energy partitioning. The nonadiabatic transition probability from the 3A' and 4A' potential energy surfaces was estimated and discussed.
Keywords
Photodissociation; Cycloalkyl Halides; Curve-crossing; $C_s$ symmetry; Ion-imaging;
Citations & Related Records
연도 인용수 순위
1 Ghazal, A. Y.; Liu, Y.; Wang, Y.; Hu, C.; Zhang, B. Chem. Phys. Lett. 2011, 511, 39.   DOI   ScienceOn
2 Park, M. S.; Jung, Y. J.; Lee, S. H.; Kim, D. C.; Jung, K. H. Chem. Phys. Lett. 2000, 322, 429.   DOI   ScienceOn
3 Eppink, A. T. J. B.; Parker, D. H. Rev. Sci. Instrum. 1997, 68, 3477.   DOI   ScienceOn
4 Zare, R. N.; Herschbach, D. R. Proc. IEEE 1963, 51, 173.   DOI
5 Becke, A. D. Phys. Rev. A 1988, 38, 3098.   DOI   ScienceOn
6 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
7 Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626.   DOI
8 Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3638.   DOI
9 Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3655.   DOI
10 Amatatsu, Y.; Yabushita, S.; Morokuma, K. J. Chem. Phys. 1996, 104, 9783.   DOI   ScienceOn
11 Mulliken, R. S. J. Chem. Phys. 1935, 3, 513.
12 McGiven, W. S.; Li, R.; Zou, P.; North, S. W. J. Chem. Phys. 1999, 111, 5771.   DOI
13 Landau, L. D.; Lifshitz, E. M. Quantum Mechanics 3; Pergamon: New York, 1997.
14 Felder, P. Chem. Phys. Lett. 1992, 197, 425.   DOI   ScienceOn
15 Amatatsu, Y.; Morokuma, K. J. Chem. Phys. 1991, 94, 4858.   DOI
16 Molina, M. J.; Rowland, F. S. Nature 1974, 248, 810.
17 Garcia, R. R.; Solomon, S. J. Geophys. Res. 1994, 99, 12937.   DOI
18 Tzeng, W. B.; Lee, Y. R.; Lin, S. M. Chem. Phys. Lett. 1994, 227, 467.   DOI   ScienceOn
19 Kim, T. K.; Lee, K. W.; Lee, K. S.; Lee, E. K.; Jung, K. H. Chem. Phys. Lett. 2007, 446, 31.   DOI   ScienceOn
20 Zou, P.; McGiven, W. S.; North, S. W. Phys. Chem. Chem. Phys. 2000, 2, 3785.   DOI   ScienceOn
21 Paul, D.; Kim, H. K.; Hong, K.; Kim, T. K. Bull. Korean Chem. Soc. 2011, 32, 659.   DOI   ScienceOn
22 Blanchet, V.; Samartzis, P. S.; Wodtke, A. M. J. Chem. Phys. 2009, 130, 034304.   DOI   ScienceOn
23 Hua, L.; Shen, H.; Zhang, C.; Cao, Z.; Zhang, B. Chem. Phys. Lett. 2008, 460, 50.   DOI   ScienceOn
24 Lee, K. S.; Lee, K. W.; Lee, S. K.; Jung, K. H.; Kim, T. K. J. Mol. Spectra. 2008, 249, 43.   DOI   ScienceOn
25 Lee, S. K.; Paul, D.; Hong, K.; Cho, H. N.; Jung, K. W.; Kim, T. K. Bull. Korean Chem. Soc. 2009, 30, 2962.   DOI   ScienceOn
26 Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1999, 110, 832.   DOI   ScienceOn
27 Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1998, 109, 4758.   DOI   ScienceOn
28 Gougousi, T.; Samartzis, P. C.; Kitsopoulos, T. N. J. Chem. Phys. 1998, 108, 5742.   DOI   ScienceOn
29 Mulliken, R. S. J. Chem. Phys. 1940, 8, 382.   DOI
30 Kim, T. K.; Park, M. S.; Lee, K. W.; Jung, K. H. J. Chem. Phys. 2001, 115, 10745.   DOI   ScienceOn
31 Lee, K. W.; Jee, Y. J.; Jung, K. H. J. Chem. Phys. 2002, 115, 4490.
32 Arnold, P. A.; Cosofret, B. R.; Dylewski, S. M.; Houston, P. L.; Carpenter, B. K. J. Phys. Chem. A 2001, 105, 1693.   DOI   ScienceOn
33 Freitas, J. E.; Hwang, H. J.; Ticknor, A. B.; Elsayed, M. A. Chem. Phys. Lett. 1991, 183, 165.   DOI   ScienceOn