DOI QR코드

DOI QR Code

Review of Parameter Estimation Procedure of Freund Bivariate Exponential Distribution

Freund 이변량 지수분포의 매개변수 추정과정 검토

  • Park, Cheol-Soon (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University) ;
  • Yoo, Chul-Sang (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University)
  • 박철순 (고려대학교 공과대학 건축사회환경공학부) ;
  • 유철상 (고려대학교 공과대학 건축사회환경공학부)
  • Received : 2011.09.07
  • Accepted : 2011.12.21
  • Published : 2012.02.29

Abstract

This study reviewed the parameter estimation procedure of the Freund bivariate exponential distribution for the decision of the annual maximum rainfall event. The method of moments was reviewed first, whose results were compared with those from the method of maximum likelihood. Both methods were applied to the hourly rainfall data of the Seoul rain gauge station measured from 1961 to 2010 to select the annual maximum rainfall events, which were also compared each other. The results derived are as follows. First, when applying the method of moments for the parameter estimation, it was found necessary to consider the correlation coefficient between the two variables as well as the mean and variance. Second, the method of maximum likelihood was better to reproduce the mean, but the method of moments was better to reproduce the annual variation of the variance. Third, The annual maximum rainfall events derived were very similar in both cases. Among differently selected annual maximum rainfall events, those with the higher rainfall amount were selected by the method of maximum likelihood, but those with the higher rainfall intensity by the method of moments.

본 연구에서는 연최대치 독립 호우사상의 결정에 사용되는 Freund 이변량 지수분포의 매개변수 추정과정을 구체적으로 검토하였다. 먼저, 모멘트법을 이용하는 경우를 구체적으로 검토하고, 그 결과를 최우도법을 적용한 결과와 비교하였다. 두 방법을 1961~2010년 서울지점의 시강우 자료에 적용하여 연최대치 독립 호우사상을 선정하고, 그 결과를 비교 검토하였다. 이러한 과정을 통해 얻은 결과는 다음과 같다. 첫째, 매개변수 추정방법으로 모멘트법을 적용하는 경우에는 두변량의 평균과 분산뿐만 아니라 상관계수도 고려해 주어야 하는 것으로 나타났다. 둘째, 최우도법은 두변량의 평균에 대한 재현성이 우수하고, 모멘트법은 분산의 경년변동을 잘 나타내는 것으로 나타났다. 셋째, 모멘트법과 최우도법을 통해 선정한 연최대치 독립 호우사상들은 대체로 유사한 것으로 나타났다. 다르게 선정된 호우사상은 최우도법의 경우에는 총 강우량이 큰 것, 모멘트법의 경우에는 강우강도가 큰 것으로 나타났다.

Keywords

References

  1. 건설교통부(2010). 설계홍수량 산정 선진화 기획 연구보고서.
  2. 권영문, 김태웅(2009). "이변량 강우 빈도해석을 이용한 서울 지역 I-D-F 곡선 유도." 대한토목학회논문집, 대한토목학회, 제29권, 제2B호, pp. 155-162.
  3. 권재호, 박무종, 김중훈(2004). "비점오염원 산정을 위한 강우 분석." 한국수자원학회 2004 학술발표회, 한국수자원학회, pp. 666-670.
  4. 김남원(1998). 강우의 시 공간분포특성: 점 강우모형 매개 변수 추정. 한국건설기술연구원.
  5. 박민규(2009). 극치 호우사상의 확률적 발생특성 및 기후 변화에 따른 변동성. 박사학위논문, 고려대학교.
  6. 박민규, 유철상(2011). "독립호우사상의 확률론적 해석: 1. 연최대 호우사상 계열의 작성." 한국방재학회지, 한국방재학회, 제11권, 제2호, pp. 127-136.
  7. 박민규, 유철상, 김현준(2010). "연최대 호우사상 계열을 이용한 측우기자료 및 현대자료의 비교." 대한토목학회논문집, 대한토목학회, 제30권, 제2B호, pp. 137-147.
  8. 유철상, 박민규(2011). "독립호우사상의 확률론적 해석: 2. 호우사상의 재현기간." 한국방재학회지, 한국방재학회, 제11권, 제2호, pp. 137-146.
  9. 이동률, 정상만(1992). "한강유역 강우의 시.공간적 특성." 한국수자원학회지, 한국수자원학회, 제25권, 제4호, pp. 75-85.
  10. Cordova, J.R., and Rodriguez-Iturbe, I. (1985). "On probabilistic structure of storm surface runoff." Water Resources Research, Vol. 21, No. 5, pp. 755-763. https://doi.org/10.1029/WR021i005p00755
  11. Goel, N.K., Kurothe, R.S., Mathur, B.S., and Vogel, R.M. (2000). "A derived flood frequency distribution for correlated rainfall intensity and duration." Journal of Hydrology, Vol. 228, pp. 56-67. https://doi.org/10.1016/S0022-1694(00)00145-1
  12. Freund, J.E. (1961). "A bivariate extension of the exponential distribution." American Statistical Association Journal, Vol. 56, No. 296, pp. 971-977. https://doi.org/10.1080/01621459.1961.10482138
  13. Kao, S-C., and Govindaraju, R.S. (2007). "A bivariate frequency analysis of extreme rainfall with implications for design." Journal of Geophysical Research Atmospheres, Vol. 112, D13119. https://doi.org/10.1029/2007JD008522
  14. Kotz, S., Balakrishnan, N., and Johnson, N.L. (2000). Continuous Multivariate Distributions Volume 1: Models and Applications, John Wiley & Sons, INC.
  15. Lee, C.H., Kim, T-W., Chung, G., Choi, M., and Yoo, C. (2010). "Application of bivariate frequency analysis to the derivation of rainfall-frequency curves." Stochastic Environmental Research and Risk Assessment, Vol. 24, pp. 389-397. https://doi.org/10.1007/s00477-009-0328-9
  16. Leurgans, S., Tsai, T.W.Y., and Crowley, J. (1982). "Multivariate distributions for the life lengths of components of a system sharing a common environment." Journal of Applied Probability, Vol. 23, pp. 418-431. https://doi.org/10.2307/3214184
  17. Madsen, K., Nielsen, H.B., and Tingleff, O. (2004). Methods for non-linear least squares problems. Informatics and mathematical modelling. Technical University of Denmark.
  18. Michele, C.D., Salvadori, G., Canossi, M., Petaccia, A., and Rosso, R. (2005). "Bivariate Statistical Approach to Check Adequacy of Dam Spillway." Journal of Hydrologic Engineering, Vol. 10, No. 1, pp. 50-57. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:1(50)
  19. Restrepo-Posada, P.J., and Eagleson, P.S. (1982). "Identification of Independent Rainstorms." Journal of Hydrology, Vol. 55, pp. 303-319. https://doi.org/10.1016/0022-1694(82)90136-6
  20. Yue, S. (2000). "The Gumbel mixed model applied to storm frequency analysis." Water Resources Management, Vol. 14, pp. 377-389. https://doi.org/10.1023/A:1011124423923
  21. Yue, S., and Rasmussen, P. (2002). "Bivariate frequency analysis: discussion of some useful concepts in hydrological application." Hydrological Processes, Vol. 16, pp. 2881-2898. https://doi.org/10.1002/hyp.1185
  22. Zhang, L., and Singh, V.P. (2007). "Bivariate rainfall frequency distributions using Archimedean copulas." Journal of Hydrology, Vol. 332, pp. 93-109. https://doi.org/10.1016/j.jhydrol.2006.06.033

Cited by

  1. Analysis on Characteristics of Orographic Effect about the Rainfall Using Radar Data: A Case Study on Chungju Dam Basin vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.393
  2. Analysis on the Characteristics about Representative Temporal-distribution of Rainfall in the Annual Maximum Independent Rainfall Events at Seoul using Beta Distribution vol.46, pp.4, 2013, https://doi.org/10.3741/JKWRA.2013.46.4.361
  3. Evaluation of Rainfall Temporal Distribution Models with Annual Maximum Rainfall Events in Seoul, Korea vol.10, pp.10, 2018, https://doi.org/10.3390/w10101468