DOI QR코드

DOI QR Code

크레아틴의 방해영향을 줄인 크레아티닌 바이오센서

A Creatinine Biosensor with Reduced Interference from Creatine

  • 구현우 (광운대학교 자연과학대학 화학과) ;
  • 권기학 (광운대학교 자연과학대학 화학과) ;
  • 임은혜 (광운대학교 자연과학대학 화학과) ;
  • 신재호 (광운대학교 자연과학대학 화학과)
  • Gu, Hyunwoo (Department of Chemistry, Kwangwoon University) ;
  • Gwon, Kihak (Department of Chemistry, Kwangwoon University) ;
  • Lim, Eunhye (Department of Chemistry, Kwangwoon University) ;
  • Shin, Jae Ho (Department of Chemistry, Kwangwoon University)
  • 투고 : 2012.11.23
  • 심사 : 2012.11.28
  • 발행 : 2012.11.30

초록

크레아티닌 센서의 생체시료 측정 시 가장 심각한 방해 작용을 발생하는 물질인 크레아틴을 효과적으로 제거하기 위하여 creatine kinase와 adenosine triphosphate를 사용한 두 번째 효소층을 도입하여 크레아틴에 대한 방해작용을 현저히 감소시켰다. 또한 평면형 소형 크레아티닌 센서를 개발하기 위해 탄소전극 표면에 Pt black(Pt-B)을 도입하여 표면적을 증가시킴으로써 전기화학적 감응 특성을 증가시킨 스크린 프린팅 방식의 Pt-B/C 전극을 제작하였다. 최적화된 소형 크레아티닌 센서를 흐름계 카트리지에 장착하여 미지시료를 측정한 결과 5% 이내의 오차 범위 내에서 우수한 측정 정확성과 재현성을 보임을 확인하였다.

The planar-type amperometric creatinine biosensor employing an additional enzyme layer containing creatine kinase and adenosine triphosphate was developed to eliminate severe interference from creatine. In the additional enzyme layer, an interfering substance, creatine is converted to noninterfering product, phosphocreatine. Furthermore, the carbon electrode electroplated with Pt black(Pt-B) was employed to fabricate creatinine biosensors with improved sensor performance(e.g., sensitivity, reliability, and reproducibility). The creatinine levels in an unknown sample were determined within less than 5% errors using creatinine microsensors equipped in a flow-cell cartridge.

키워드

참고문헌

  1. M. B. Madaras and R. P. Buck, 'Miniaturized Biosensors Employing Electropolymerized Permselective Films and Their Use for Creatinine Assays in Human Serum' Anal. Chem., 68, 3832 (1996). https://doi.org/10.1021/ac960239r
  2. G. F. Khan and W. Wernet, 'A highly sensitive amperometric creatinine sensor' Anal. Chim. Acta, 351, 151 (1997). https://doi.org/10.1016/S0003-2670(97)00362-0
  3. E. J. Kim, T. Haruyama, Y. Yanagida, E. Kobatake, and M. Aizawa, 'Disposable creatinine sensor based on thickfilm hydrogen peroxide electrode system' Anal. Chim. Acta, 394, 225 (1999). https://doi.org/10.1016/S0003-2670(99)00308-6
  4. K. Spencer, 'Analytical reviews in clinical biochemistry: the estimation of creatinine' Ann. Clin. Biochem., 23, 1- 25 (1986). https://doi.org/10.1177/000456328602300101
  5. G. G. Wallace, 'Conducting electroactive polymer-based biosensors' Trends Anal. Chem., 18, 245 (1999). https://doi.org/10.1016/S0165-9936(98)00113-7
  6. S. Milardovic, I. Kruhak, D. Ivekovic, V. Rumenjak, M. Tkalcec, and B. S. Grabaric, 'Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode' Anal. Chim. Acta, 350, 91 (1997). https://doi.org/10.1016/S0003-2670(97)00308-5
  7. Q. Chen, 'Novel designs and fabrication of amperometric biosensors' A Bell & Howell, Michigan, 1998, p. 19.
  8. I. C. Popescu, S. Cosnier, and P. Labbe, 'Peroxidaseglucose oxidase-poly(amphiphilic pyrrole) bioelectrode for selectively mediated amperometric detection of glucose' Electroanalysis, 9, 998 (1997). https://doi.org/10.1002/elan.1140091306
  9. I. C. Popescu, G. Zetterberg, and L. Gorton, 'Influence of graphite powder, additives and enzyme immobilization procedures on a mediatorless HRP-modified carbon paste electrode for amperometric flow-injection detection of $H_{2}O_{2}$' Biosens. Bioelectron., 10, 443 (1995). https://doi.org/10.1016/0956-5663(95)96891-2
  10. S. Yabuki, F. Mizutani, and Y. Hirata, 'Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide' J. Electroanal. Chem., 468, 117 (1999). https://doi.org/10.1016/S0022-0728(99)00088-1
  11. Y. Zhang, Y. Hu, and G. S. Wilson, 'Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor' Anal. Chem., 66, 1183 (1994). https://doi.org/10.1021/ac00079a038
  12. I. M. Christie, P. H. Treloar, and P. Vadgama, 'Plasticized poly(vinyl chloride) as a permselective barrier membrane for high-selectivity amperometric sensors and biosensors' Anal. Chim. Acta, 269, 65 (1992). https://doi.org/10.1016/0003-2670(92)85134-R
  13. M. N. Szentirmay and C. R. Martin, 'Ion-exchange selectivity of Nafion films on electrode surfaces' Anal. Chem., 56, 1898 (1984). https://doi.org/10.1021/ac00275a031
  14. J. Wang, N. Naser, and M. Ozsoz, 'Plant tissue-based amperometric electrode for eliminating ascorbic acid interferences' Anal. Chim. Acta, 234, 315 (1990). https://doi.org/10.1016/S0003-2670(00)83572-2
  15. S. V. Sasso, R. J. Pierce, R. Walla, and A. M. Yacynych, 'Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors' Anal. Chem., 62, 1111 (1990). https://doi.org/10.1021/ac00210a004
  16. S. K. Jung and G. S. Wilson, 'Polymeric Mercaptosilane- Modified Platinum Electrodes for Elimination of Interferants in Glucose Biosensors' Anal. Chem., 68, 591 (1996). https://doi.org/10.1021/ac950424p
  17. Y. Degani and A. Heller, 'Direct electrical communication between chemically modified enzymes and metal electrodes. II: Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase' J. Am. Chem. Soc., 110, 2615 (1988). https://doi.org/10.1021/ja00216a040
  18. E. Kiaudet, F. Battaglini, and E. J. Calvo, 'Electrochemical study of sulphonated ferrocenes as redox mediators in enzyme electrodes' J. Electroanal. Chem., 293, 55 (1990). https://doi.org/10.1016/0022-0728(90)80052-8
  19. Y. Kajiya, H. Sugai, C. Iwakura, and H. Yoneyama, 'Glucose sensitivity of polypyrrole films containing immobilized glucose oxidase and hydroquinonesulfonate ions' Anal. Chem., 63, 49 (1991). https://doi.org/10.1021/ac00001a009
  20. A. Heller, 'Electrical connection of enzyme redox centers to electrodes' J. Physiol. Chem., 96, 3579 (1992). https://doi.org/10.1021/j100188a007
  21. J. E. Frew, M. A. Harmer, H. A. O. Hill, and S. I. Libor, 'A method for estimation of hydrogen peroxide based on mediated electron transfer reactions of peroxidases at electrodes' J. Electroanal. Chem., 201, 1 (1986). https://doi.org/10.1016/0022-0728(86)90083-5
  22. C. Petit, K. Murakami, A. Erdem, E. Kilinc, G. O. Borondo, J.-F. Liegeois, and J.-M. Kauffmann, 'Horseradish Peroxidase Immobilized Electrode for Phenothiazine Analysis' Electroanalysis, 10, 1241 (1998). https://doi.org/10.1002/(SICI)1521-4109(199812)10:18<1241::AID-ELAN1241>3.0.CO;2-Q
  23. G. Cui, S. J. Kim, S. H. Choi, H. Nam, and G. S. Cha, 'A Disposable Amperometric Sensor Screen Printed on a Nitrocellulose Strip: A Glucose Biosensor Employing Lead Oxide as an Interference-Removing Agent' Anal. Chem., 72, 1925 (2000). https://doi.org/10.1021/ac991213d
  24. J. H. Shin, Y. S. Choi, H. J. Lee, S. H. Choi, J. Ha, I. J. Yoon, H. Nam, and G. S. Cha, 'A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences' Anal. Chem., 73, 5965 (2001). https://doi.org/10.1021/ac010469s
  25. T. Tsuchida and K. Yoda, 'Multi-Enzyme Membrane Electrodes for Determination of Creatinine and Creatine in Serum' Clin. Chem., 29, 51 (1983).