DOI QR코드

DOI QR Code

반복이 있는 랜덤화 블록 계획법에서 정렬 방법을 이용한 비모수 검정법

Nonparametric Method Using an Alignment Method in a Randomized Block Design with Replications

  • 이민희 (가톨릭대학교 의학통계학과) ;
  • 김동재 (가톨릭대학교 의학통계학과)
  • Lee, Min-Hee (Department of Biostatistics, Catholic University) ;
  • Kim, Dong-Jae (Department of Biostatistics, Catholic University)
  • 투고 : 20111000
  • 심사 : 20111100
  • 발행 : 2012.01.30

초록

반복이 있는 랜덤화 블록 계획법을 검정하는 비모수 검정방법에는 Mack과 Skillings (1980)가 제안한 검정법이 있다. 이 방법은 각 블록의 처리에서 반복된 각 관측값 대신에 반복된 관측값들의 평균을 이용하여 순위를 매기기 때문에 정보의 손실이 있을 수 있다. 본 논문에서는 Hodges와 Lehmann (1962)이 제안한 정렬방법을 이용하여 새로운 비모수 검정법을 제안한다. 또한 모의실험을 통하여 여러 비모수 검정방법들의 검정력을 비교하였다.

Mack and Skillings (1980) proposed a typical nonparametric method in a randomized block design with replications. However, this method may lose information because of the use of average observations instead of individual observations. In this paper, we proposed a nonparametric method that employed an aligned method suggested by Hodges and Lehmann (1962) under a randomized block design with replications. In addition, the comparative results of a Monte Carlo power study are presented.

키워드

참고문헌

  1. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association, 32, 675-701. https://doi.org/10.2307/2279372
  2. Hettmansperger, T. P. (1975). Non-parametric inference for ordered alternatives in a randomized block design, Psychometrika, 40, 53-62. https://doi.org/10.1007/BF02291479
  3. Hodges, J. L. and Lehmann, E. L. (1962). Rank methods for combination of independent experiments in analysis of variance, The annals of Mathematical Statistics, 33, 482-497. https://doi.org/10.1214/aoms/1177704575
  4. Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 133-145. https://doi.org/10.1093/biomet/41.1-2.133
  5. Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583-621. https://doi.org/10.2307/2280779
  6. Mack, G. A. (1981). A quick and easy distribution-free test for main effxcts in a two-factor ANOVA, Communications in Statistics - Simulation and Computation, 10, 571-591. https://doi.org/10.1080/03610918108812236
  7. Mack, G. A. and Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA, Journal of the American Statistical Association, 75, 947-951. https://doi.org/10.2307/2287186
  8. Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other, Annals of Mathematical Statistics, 18, 50-60. https://doi.org/10.1214/aoms/1177730491
  9. Skillings, J. H. and Wolfe, D. A. (1977). Testing for ordered alternatives by combining independent distribution-free block statistics, Communications in Statistics - Theory and Methods, 6, 1453-1463. https://doi.org/10.1080/03610927708827588
  10. Skillings, J. H. and Wolfe, D. A. (1978). Distribution-free tests for ordered alternatives in a randomized block design, Journal of the American Statistical Association, 73, 427-431. https://doi.org/10.2307/2286678
  11. Terpstra, T. J. (1952). The asymptotic normality and consistency of kendall's test against trend, when ties are present in one ranking, Indagationes Mathematicae, 14, 327-333.