참고문헌
- Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association, 32, 675-701. https://doi.org/10.2307/2279372
- Hettmansperger, T. P. (1975). Non-parametric inference for ordered alternatives in a randomized block design, Psychometrika, 40, 53-62. https://doi.org/10.1007/BF02291479
- Hodges, J. L. and Lehmann, E. L. (1962). Rank methods for combination of independent experiments in analysis of variance, The annals of Mathematical Statistics, 33, 482-497. https://doi.org/10.1214/aoms/1177704575
- Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 133-145. https://doi.org/10.1093/biomet/41.1-2.133
- Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583-621. https://doi.org/10.2307/2280779
- Mack, G. A. (1981). A quick and easy distribution-free test for main effxcts in a two-factor ANOVA, Communications in Statistics - Simulation and Computation, 10, 571-591. https://doi.org/10.1080/03610918108812236
- Mack, G. A. and Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA, Journal of the American Statistical Association, 75, 947-951. https://doi.org/10.2307/2287186
- Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other, Annals of Mathematical Statistics, 18, 50-60. https://doi.org/10.1214/aoms/1177730491
- Skillings, J. H. and Wolfe, D. A. (1977). Testing for ordered alternatives by combining independent distribution-free block statistics, Communications in Statistics - Theory and Methods, 6, 1453-1463. https://doi.org/10.1080/03610927708827588
- Skillings, J. H. and Wolfe, D. A. (1978). Distribution-free tests for ordered alternatives in a randomized block design, Journal of the American Statistical Association, 73, 427-431. https://doi.org/10.2307/2286678
- Terpstra, T. J. (1952). The asymptotic normality and consistency of kendall's test against trend, when ties are present in one ranking, Indagationes Mathematicae, 14, 327-333.