DOI QR코드

DOI QR Code

GZO 타겟 결정성에 따른 박막의 전기적 광학적 특성

A Study on Electrical, Optical Properties of GZO Thin Film with Target Crystalline

  • 이규호 (가천대학교 전기전자공학과) ;
  • 김경환 (가천대학교 전기전자공학과)
  • Lee, Kyu-Ho (Department of Electrical Engineering, Gacheon University) ;
  • Kim, Kyung-Hwan (Department of Electrical Engineering, Gacheon University)
  • 투고 : 2012.01.04
  • 심사 : 2012.01.20
  • 발행 : 2012.02.01

초록

In this research, we prepared Ga doped zinc oxide(ZnO:Ga, GZO) targets each difference sintering temperature $700^{\circ}C$, $800^{\circ}C$, and doping rate 1 wt.%, 2 wt.%, 3 wt.%. The characteristics of thin film on glass substrates which deposited by facing target sputtering in pure Ar atmosphere are reported. Ga doped zinc oxide film is attracted material through low resistivity, high transmittance, etc. When prepared target powder's structure was investigated by scanning electron microscope, densification and coarsening by driving force was observed. For each ZnO:Ga films with a $Ga_2O_3$ content of 3 wt.% at input power of 45W, the lowest resistivity of $9.967{\times}10^{-4}{\Omega}{\cdot}cm$ ($700^{\circ}C$) and $9.846{\times}10^{-4}{\Omega}{\cdot}cm$ ($800^{\circ}C$) was obtained. the carrier concentration and mobility were $4.09{\times}10^{20}cm^{-3}$($700^{\circ}C$), $4.12{\times}10^{20}cm^{-3}$($800^{\circ}C$) and $15.31cm^2/V{\cdot}s(700^{\circ}C)$, $12.51cm^2/V{\cdot}s(800^{\circ}C)$, respectively. And except 1 wt.% Ga doped ZnO thin film, average transmittance of these samples in the range 350-800 nm was over 80%.

키워드

참고문헌

  1. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Appl. Phys., 83, 2631 (1998). https://doi.org/10.1063/1.367025
  2. F. Cooray, K. Kushiya, A. Fujimaki, I. Sugiyama, T. Miura, D. Okumura, M. Sato, M. Ohshita, and O. Yamase, Sol. Energy Mater. Sol. Cells, 49, 291 (1997). https://doi.org/10.1016/S0927-0248(97)00055-X
  3. G. L. Harding, B. Window, and E. C. Horrigan, Sol. Energy Mater., 22, 69 (1991). https://doi.org/10.1016/0165-1633(91)90007-8
  4. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, Jpn. J. Appl. Phys., 35, L56 (1996). https://doi.org/10.1143/JJAP.35.L56
  5. B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, and R. A. Rabadanov, Thin Solid Films, 260, 19 (1995). https://doi.org/10.1016/0040-6090(94)09485-3
  6. V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, Thin Solid Films, 427, 401 (2003). https://doi.org/10.1016/S0040-6090(02)01184-7
  7. K. Yim, H. W. Kim, and C. Lee, J. Mater. Sci. Technol., 23, 108 (2007). https://doi.org/10.1179/174328407X158514
  8. N. Matsushita, K. Noma, S. Nakagawa, and M. Naoe, Int. Conference on Ferrites, 6, 428 (1992).
  9. Housei Akazawa, Applied Physics Express, 2, 081601 (2009). https://doi.org/10.1143/APEX.2.081601
  10. H. Lei, K. Ichikawa, M. H. Wang, Y. Hoshi, T. Uchida, and Y. Sawada, IEICE Transactions on Electronics, E91.C, 1658 (2010). https://doi.org/10.1093/ietele/e91-c.10.1658
  11. T. S. Moss, Proc. Phys. Soc. London, Sect., B67, 775 (1954).
  12. J. Krc, M. Zeman, A. Campa, F. Smole and M. Topic, MRS Symp. Proc., 910, 0910-A25-01 (2006). https://doi.org/10.1557/PROC-0910-A25-01