DOI QR코드

DOI QR Code

Extraction of Street Tree Information Using Airborne LIDAR Data

항공라이다 자료를 이용한 가로수 정보의 추출

  • Received : 2012.09.03
  • Accepted : 2012.12.05
  • Published : 2012.12.31

Abstract

The street trees in the urban areas provide an comfortable environment to the pedestrians and drivers and play important roles to absorb the carbons. Therefore, it is necessary to acquire and manage efficiently the location, height, and crown width of street trees. This study suggests a methodology to provide quantitative information of the street trees in urban areas including the quantity, location, height, and crown width of the trees. Therefore, it is more appropriate to add functionality of changing size of the crown width of the trees in the method. In addition, the positions of the street trees were selected using the fact that street trees are generally planted along the road in a straight line. An experiment on extracting street trees was conducted in parts of Osan-si, Gyeonggi-do and the suitability of the suggested methodology was evaluated by comparing the results to a 1/1,000 digital map. Through the experimental results, the minimum, maximum, and the root mean square errors of the position of street trees were 0.5m, 1.9m, and approximately ${\pm}0.4m$, respectively.

도시지역의 가로수는 보행자와 운전자에게 쾌적한 환경을 제공하며 탄소를 흡수하는 중요한 역할을 수행한다. 따라서 가로수의 위치, 수고, 수관폭 등에 대한 효율적인 획득과 관리가 필요하다. 본 연구는 항공라이다 자료를 이용하여 도시지역 가로수에 대한 개수, 위치, 수고, 수관폭의 수치적인 정보를 추출하는 방법론을 제안하였다. 가로수는 그 형태와 크기가 다를 수 있기 때문에 본 연구에서는 수관폭의 크기를 변화시키면서 가로수를 추출하는 방법을 제안하였다. 또한 가로수는 일반적으로 도로변을 중심으로 식재되기 때문에 이러한 식재위치의 직선적 특성을 이용하여 가로수점들을 선택하였다. 오산시 일부를 대상으로 가로수 추출에 대한 실험을 수행하였으며 결과는 1/1,000 수치지도와 비교하여 제안한 방법론의 적합성을 평가하였다. 실험 결과를 통해서, 가로수의 위치오차는 최소 0.5m, 최대 1.9m, 그리고 평균제곱근오차는 약 ${\pm}0.4m$를 나타냈다.

Keywords

References

  1. Axelsson, P., 2000, DEM Generation from Laser Scanner Data Using Adaptive TIN Model, International Archives of Photogrammetry and Remote Sensing, 33:110-117.
  2. Chen, L., Teo, T., Chiang, T., 2006, The Generation of 3D Tree Models by the Integration of Multi-Sensor Data, PSIVT06, 34-43.
  3. Cho, D., Kim, E., 2010, Extraction of Spatial Information of Tree Using LIDAR Data in Urban Area, Journal of the Korean Society for Geo-spatial Information System, 18(4):11-20.
  4. Cho, D., Kim, E., 2012, Estimation of Individual Street Trees Using Simulated Airborne LIDAR Data, Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 30(3):269-277. https://doi.org/10.7848/ksgpc.2012.30.3.269
  5. Demir, N., Poli, D., Baltsavias, E., 2008, Extraction of Buildings and Trees Using Image and LiDAR Data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IAPRS, Vol.XXXVII, Part B4, 313-318.
  6. Hwang, S., Kim, S., Lee, I., 2010. Detection of Forest Areas using Airborne LIDAR Data, Journal of the Korean Society for Geo-spatial Information System, 18(3):23-32
  7. Kaartinen, H., Hyyppä1, J., Yu1, X., Vastaranta, M., Hyyppä, H., Kukko1, A., Holopainen, M., Heipke, C., Hirschmugl, M., Morsdorf, F., Næsset, E., Pitkänen, J., Popescu, S., Solberg, S., Wolf1, B. and Wu, J., 2012, An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning, Remote Sensing, 4(4):950-974. https://doi.org/10.3390/rs4040950
  8. Kim, E., Cho, D., 2011, Extraction of the Street Trees Information Using LIDAR Data, Joint Conference on Korean Society Cadastral․ Korean Cadastre Information Association, 155-167.
  9. Kim, E., Cho, D., 2012, Estimation of Street Trees Information Using Aerial LIDAR Data in Urban Area, The 14th International Symposium of Geospatial Information Science and Urban Planning, 17-24.
  10. Kim, K., Shin, S., Lim, Y., Kim, H., Oh, J., 2005, Trend of Multi-sensor Spatial Imagery Processing Technology, Electronics and Telecommunications Trends, 20(3):92-103.
  11. Koch, B., Heyder, U., Weinacker, H., 2006, Detection of Individual Tree Crowns in Airborne Lidar Data, Photogrammetric Engineering & Remote Sensing, 72(4):357-363. https://doi.org/10.14358/PERS.72.4.357
  12. Korea Forest Service, 2003, Guideline for the Construction and Management of Street Trees.
  13. Lang, S., Tiede, D., Maier, B., Blaschke, T., 2006, 3D Forest Structure Analysis from Optical and LIDAR Data, Revista Ambieencia, Guarapuava, vol. 2 Ediccaao Especial 1:95-110.
  14. Li, W., Q. Guo, M. Jakubowski and M. Kelly, 2012, A New Method for Segmenting Individual Trees from the Lidar Point Cloud, Photogrammetric Engineering and Remote Sensing, 78(1):75-84. https://doi.org/10.14358/PERS.78.1.75
  15. Lim, C., 2007, Estimation of Urban Tree Crown Volume based on Object-oriented Approach and LIDAR Data, Master's Thesis, International Instiute for Geo-Information Science and Earth Observation, University of Twente.
  16. Persson, A., 2001, Extraction of Individual Trees Using Laser Radar Data, Sensor Technology, Scientific Report FOI-R-0236-SE.
  17. Persson, A., Holmgren, J. & Söderman, U., 2002, Detecting and Measuring Individual Trees Using an Airborne Laser Scanner, Photogrammetric Engineering & Remote Sensing, 68:925-932.
  18. Solberg, S., Naesset, E. & Bollandsas, O. M., 2006, Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest, Photogrammetric Engineering & Remote Sensing, 72(12): 1369-1378. https://doi.org/10.14358/PERS.72.12.1369
  19. Tiede, D., Lang, S., Maier, B., 2007, Transferability of a Tree-Crown Delineation Approach Using Region-specific Segmentation, Anais XIII Simposio Brasileiro de Sensoriamento Remoto, Florianopolis, Brasil, 21-26, INPE, 1883-1890.
  20. Wang, Y., Weinacker, D., Koch, B., 2008, A LIDAR Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest, Sensors 2008, ISSN 1424-8220, 3938-3951.
  21. Woo, C., 2006, DEM Generation and Tree Height Estimation in Forest Area Using Airborne LiDAR Data, Inha University Master Thesis.
  22. Yu, X., Hyyppä, J., Kaartinen, H. & Maltamo, M., 2004, Automatic Detection of Harvested Trees and Determination of Forest Growth Using Airborne Laser Scanning, Remote Sensing of Environment, 90:451-462. https://doi.org/10.1016/j.rse.2004.02.001

Cited by

  1. A Study on the Application of River Surveying by Airborne LiDAR vol.22, pp.2, 2014, https://doi.org/10.7319/kogsis.2014.22.2.025
  2. LiDAR 데이터와 임상도를 이용한 산림정보의 3차원 시각화 vol.22, pp.5, 2014, https://doi.org/10.12672/ksis.2014.22.5.053