참고문헌
- Bai, Y., Frederic, D.A., Donald, L.S., and Brian, T.D. 2002. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48, 230-238. https://doi.org/10.1139/w02-014
- Bashan, Y., Holguin, G., and de-Bashan, L.E. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances. Can. J. Microbiol. 50, 521-577. https://doi.org/10.1139/w04-035
- Banchio, E., Bogino, P.C., Zygadlo, J., and Giordano, W. 2008. Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem. Syst. Ecol. 36, 766-771. https://doi.org/10.1016/j.bse.2008.08.006
- Calvo, P., Orrillo, E.O., Romero, E.M., and Zuniga, D. 2010. Characterization of Bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics. Braz. J. Microbiol. 41, 899-906. https://doi.org/10.1590/S1517-83822010000400008
- Chaiharn, M. and Lumyong, S. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J. Microbiol. Biotechnol. 25, 305-314. https://doi.org/10.1007/s11274-008-9892-2
- Chang, W.T., Chen, Y.C., and Jao, C.L. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour. Technol. 98, 1224-1230. https://doi.org/10.1016/j.biortech.2006.05.005
- Chatli, A.S., Beri, V., and Sidhu, B.S. 2008. Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian J. Microbiol. 48, 267-273. https://doi.org/10.1007/s12088-008-0037-y
- Goldstein, A.H. 1986. Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am. J. Alter. Agric. 1, 51-57. https://doi.org/10.1017/S0889189300000886
- Han, J., Xia, D., Li, L., Sun, L., Yang, K., and Zhang, L. 2009. Diversity of culturable bacteria isolated from root domains of Moso Bamboo (Phyllostachys edulis). Microb. Ecol. 58, 363-373. https://doi.org/10.1007/s00248-009-9491-2
- Hartmann, A., Singh, M., and Klingmueller, W. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can. J. Microbiol. 29, 916-923. https://doi.org/10.1139/m83-147
- Hynes, R.K., Leung, G.C., Hirkala, D.L., and Nelson, L.M. 2008. Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can. J. Microbiol. 54, 248-258. https://doi.org/10.1139/W08-008
- Joshi, P. and Bhatt, A.B. 2011. Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int. J. Environ. Sci. 1, 1135-1143.
- Joshi, P., Tyagi, V., and Bhatt, A.B. 2011. Characterization of rhizobacteria diversity isolated from Oryza sativa cultivated at different altitude in North Himalaya. Adv. Appl. Sci. Res. 4, 208-216.
- Lee, C.S., Kim, K.D., Hyun, J.W., and Jeun, Y.C. 2003. Isolation of rhizobacteria in Jeju island showing anti-fungal effect against fungal plant pathogens. Mycobiol. 31, 251-254. https://doi.org/10.4489/MYCO.2003.31.4.251
- Lee, S., Ka, J.-O., and Song, H.-G. 2012. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J. Microbiol. 50, 45-49. https://doi.org/10.1007/s12275-012-1415-z
- Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- McGinnis, S. and Madden, T.L. 2004. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, 20-25.
- Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170, 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- Noura, R., Ameur, C., Abdellatif, B., and Daniele, D. 2008. Screening of plant growth promoting traits of Bacillus thuringiensis. Ann. Microbiol. 58, 47-52. https://doi.org/10.1007/BF03179444
- Pereira, P., Ibanez, F., Rosenblueth, M., Etcheverry, M., and Martinez- Romero, E. 2011. Analysis of the bacterial diversity associated with the roots of Maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecology, Volume 2011, Article ID 938546, 10 pages, doi:10.5402/2011/938546.
- Ramos, B., Pozuelo, J.M., Acero, N., and Gutierrez Manero, F.J. 1998. Seasonal variation of Bacillus isolates from the rhizosphere of Elaeagnus angustifolia L. Orsis. 13, 7-16.
- Rroco, E., Kosegarten, H., Harizaj, F., Imani, J., and Mengel, K. 2003. The importance of soil microbial activity for the supply of iron to sorghum and rape. Europ. J. Agron. 19, 487-493. https://doi.org/10.1016/S1161-0301(02)00185-5
- Sadfi, N., Cherif, M., Hajlaoui, M.R., Boudabbous, A., and Belanger, R. 2002. Isolation and partial purification of antifungal metabolites produced by Bacillus cereus. Ann. Microbiol. 52, 323-337.
- Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47 -56. https://doi.org/10.1016/0003-2697(87)90612-9
- Selvadurai, E.L., Brown, A.E., and Hamilton, J.T.G. 1991. Production of indole-3-acetic acid analogues by strains of Bacillus cereus in relation to their influence on seedling development. Soil Biol. Biochem. 23, 401-403. https://doi.org/10.1016/0038-0717(91)90198-S
- Sharma, A., Johri, B.N., Sharma, A.K., and Glick, B.R. 2003. Plant growth promoting bacterium Pseudomonas sp., strain GRP3 influences iron acquisition in mung bean (Vigna radiate L. Wilzeck). Soil Biol. Biochem. 35, 887-894. https://doi.org/10.1016/S0038-0717(03)00119-6
- Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
- Tompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Vendan, R.T., Yu, Y.J., Lee, S.H., and Rhee, Y.H. 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48, 559-565. https://doi.org/10.1007/s12275-010-0082-1
- Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586. https://doi.org/10.1023/A:1026037216893
- Yang, J., Kloepper, J.W., and Ryu, C.M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14, 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
- Yu, W.J., Lee, B.J., Nam, S.Y., Yang, D.C., and Yun, Y.W. 2003. Modulating effects of Korean ginseng saponins on ovarian function immature rats. Biol. Pharm. Bull. 26, 2574-2580.
피인용 문헌
- Epilithonimonas ginsengisoli sp. nov., isolated from soil of a ginseng field vol.65, pp.Pt 1, 2015, https://doi.org/10.1099/ijs.0.065466-0
- Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0155055
- Comparative study of rhizobacterial communities in pepper greenhouses and examination of the effects of salt accumulation under different cropping systems vol.199, pp.2, 2017, https://doi.org/10.1007/s00203-016-1304-7