DOI QR코드

DOI QR Code

포도당을 주입한 수중퇴적물을 이용한 연료전지시스템에 있어서 미생물군집 분석

Analysis of Microbial Communities in Aquatic Sediment Microbial Fuel Cells Injected with Glucose

  • 김민 (청심국제고등학교) ;
  • ;
  • 김수현 (한국해양대학교 환경공학과) ;
  • 장재수 (한국해양대학교 환경공학과) ;
  • 고성철 (한국해양대학교 환경공학과)
  • Kim, Min (Chumgshim International High School) ;
  • Ekpeghere, Kalu I. (Department of Environmental Engineering, Korea Maritime University) ;
  • Kim, Soo-Hyeon (Department of Environmental Engineering, Korea Maritime University) ;
  • Chang, Jae-Soo (Department of Environmental Engineering, Korea Maritime University) ;
  • Koh, Sung-Cheol (Department of Environmental Engineering, Korea Maritime University)
  • 투고 : 2012.12.12
  • 심사 : 2012.12.26
  • 발행 : 2012.12.31

초록

본 연구의 목적은 포도당을 자연의 저질기반 미생물연료전지에 주입할 경우 전기생산을 최적화하기 위한 것이며, 이 때 관련된 미생물의 군집을 분석하고 관련미생물의 역할을 검토하고자 하였다. 1,000 mg/L의 포도당이 주입되었을 때 생성되는 전류가 약 3배 가량 증가하였다. 이러한 증가는 주로 발효세균과 전기생성세균의 상호작용에 기인하는 것으로서, 이는 발효미생물에 의해 생성된 유기산이 전기생성 미생물에 의해서 분해되므로 유기산의 축적을 방지하여 되먹임저해(feedback inhibition) 현상을 감소 시키는데 그 원인이 있는 것으로 보인다. 반면, 더 높은 농도의 포도당이 주입되었을 시에는 전류가 떨어지거나 큰 증가가 일어나지 않았다. 만약 적절한 농도의 포도당이 주입될 시, 전기생성 미생물과 발효미생물이 동시에 포도당을 분해하면서 피드백을 제거하며 전류생성이 증가함을 알 수 있었다. 포도당을 토양에 주입하였을 시에 Clostridium sp.과 같은 발효미생물이 많이 나타났다. 포도당의 발효는 전기생성에 있어서 긍정적 영향과 부정적 영향을 미칠 수 있음이 밝혀졌다. 즉 발효산물이 전기생성미생물에 의해서 분해되어서 사용된다면 전기생성이 증가한다. 하지만, 발효산물이 전기생성미생물에 의해서 분해되지 못한다면 여러 전기생성을 억제하는 화학적반응(pH 저하, 메탄생성, 유기산 축적 등)이 일어나고 미생물연료전지와 관계없는 미생물들이 주입된 유기물을 대부분 분해하여 전기생성이 저하될 수 있음이 밝혀졌다. 적절한 농도의 포도당 주입을 통한 발효세균(Clostridium sp. 등)과 전기발생균(Geobacter sp. 등)의 적절한 조합은 자연상태에서의 혼합미생물존재 환경에서의 전기생산을 증가시킬 수 있을 것으로 기대된다.

The purpose of this research was to optimize electric current production of sediment microbial fuel cells by injecting glucose and to investigate its impact on microbial communities involved. It was shown that injection of proper concentration of glucose could increase electric current generated from sediment microbial fuel cells. When 1,000 mg/L of glucose, as opposed to higher concentrations, was injected, electric current increased up to 3 times. This increase is mainly attributed to the mutual relationship between fermenting bacteria and exoelectrogenic bacteria. Here the organic acids generated by fermenting bacteria could be utilized by exoelectrogenic bacteria, removing feedback inhibition caused by the organic acids. When glucose was injected, the population of Clostridium increased as to ferment injected glucose. Glucose fermentation can have either a positive or negative effect on electric current generation. When exoelectrogenic bacteria may readily utilize the end-product, electric current could increase. However, when the end-product was not readily removed, then detrimental chemical reactions (pH decrease, methane generation, organic acids accumulation) occurred: exoelctrogenic bacteria population declined and non-microbial fuel cell related microorganisms prospered. By injecting a proper concentration of glucose, a mutual relationship between fermenting bacteria, such as Clostridium, and exoelectrogenic bacteria, such as Geobacter, should be fulfilled in order to increase electricity production in mixed cultures of microorganisms collected from the aquatic sediments.

키워드

참고문헌

  1. Bond, D.R. and Lovley, D.R. 2003. Electricity production by Geobactersulfurreducens attached to Electrodes. Appl. Environ. Microbiol. 69, 1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  2. Chin, H.L., Chen, Z.S., and Chou, C.P. 2003. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol. Prog. 19, 383-388. https://doi.org/10.1021/bp0200604
  3. Coyne, V.E., James, M.D., Reid, S., and Rybicki, E.P. 2001. Molecular Biology Techniques Manual, pp. 3-25. Department of Molecular and Cell Biology, University of Cape Town, South Africa.
  4. Finch, A.S., Mackie, T.D., Sund, C.J., and Sumner, J.J. 2011. Metabolite analysis of Clostridium acetobutylicum:Fermentation in a microbial fuel cell. Biores. Technol. 102, 312-315. https://doi.org/10.1016/j.biortech.2010.06.149
  5. Freguia, S., Rabaey, K., Yuan, Z., and Keller, J. 2008. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ. Sci. Technol. 42, 7937-7943. https://doi.org/10.1021/es800482e
  6. He, Z., Shao, H., and Angenent, L.T. 2007. Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens. Bioelectron. 22, 3252-3255. https://doi.org/10.1016/j.bios.2007.01.010
  7. Holmes, D.E., Bond, D.R., and Lovley, D.R. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234-1237. https://doi.org/10.1128/AEM.70.2.1234-1237.2004
  8. Hong, L., Ramnarayanan, R., and Logan, B.E. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285. https://doi.org/10.1021/es034923g
  9. Kiely, P.D., Regan, J.M., and Logan, B.E. 2011. The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr. Opin. Biotechnol. 22, 378-385. https://doi.org/10.1016/j.copbio.2011.03.003
  10. Logan, B.E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 374-379.
  11. Logan, B.E., Murano, C., Scott, K., Gray, N.D., and Head, I.M. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39, 942-952. https://doi.org/10.1016/j.watres.2004.11.019
  12. Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., and Goodwin, S. 1993. Geobacter metallireducens gen. nov. sp. Nov., a micoorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336-344. https://doi.org/10.1007/BF00290916
  13. Moon, H., Chang, I.S., and Kim, B.H. 2006. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Biores. Technol. 97, 621-627. https://doi.org/10.1016/j.biortech.2005.03.027
  14. Pant, D., Gilbert, V.B., Diels, L., and Vanbroekhoven, K. 2009. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Biores. Technol. 10, 1533-1544.
  15. Park, H.S., Kim, B.H., Kim, H.S., Kim, H.J., Kim, G.T., Kim, M., Chang, I.S., Park, Y.K., and Chang, H.I. 2011. A novel electrochemically active and Fe (III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7, 297-306.
  16. Rabaey, K., Lissens, G., Siciliano, S.D., and Verstraete, W. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25, 1531-1535. https://doi.org/10.1023/A:1025484009367
  17. Raghavulu, S.V., Mohan, S.V., Goud, R.K., and Sarma, P.N. 2009. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem. Comm. 11, 371-375. https://doi.org/10.1016/j.elecom.2008.11.038
  18. Rezaei, F., Richard, T.L., Brennan, T.L., and Logan, B.E. 2007. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ. Sci. Technol. 41, 4053-4058. https://doi.org/10.1021/es070426e
  19. Schumahcer, B.A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments, pp. 5-7. United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory, Las Vegas, USA.
  20. Song, T.-S., Yan, Z.-S., Zhao, Z.-W., and Jiang, H.-L. 2011. Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosys. Eng. 34, 621-627. https://doi.org/10.1007/s00449-010-0511-x

피인용 문헌

  1. Organic content influences sediment microbial fuel cell performance and community structure vol.220, 2016, https://doi.org/10.1016/j.biortech.2016.09.005