DOI QR코드

DOI QR Code

Potential Application of Environmental Tracer in Hydrogeochemistry Using Sorption Properties

환경 추적자의 흡착 특성을 이용한 수리지화학적 활용 가능성 고찰

  • Choung, Sungwook (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Chang, Seeun (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Minkyung (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Sungpyo (Department of Environmental Engineering, Korea University) ;
  • Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
  • 정성욱 (포항공과대학교 첨단원자력공학부) ;
  • 장세은 (포항공과대학교 첨단원자력공학부) ;
  • 김민경 (포항공과대학교 첨단원자력공학부) ;
  • 김성표 (고려대학교 환경시스템공학과) ;
  • 엄우용 (포항공과대학교 첨단원자력공학부)
  • Received : 2012.11.08
  • Accepted : 2012.11.27
  • Published : 2012.12.31

Abstract

This study provided sorption properties of chlorofluorocarbons (CFCs), and elucidated potential application of CFC sorption data in hydrogeochemistry. Prior sorption studies were reviewed for hydrophobic organic compounds similar to the CFCs, because there were only few CFC sorption studies. The CFCs are regarded as relatively conservative chemicals in groundwater environments based on their moderate hydrophobicity. However, thermally altered carbonaceous matter (TACM) can significantly increase sorption capacity and nonlinearity for hydrophobic organic compounds such as CFCs, compared to general soil organic matter. CFC sorption behavior are close to the sorption for reviewed organic chemicals. Therefore, the CFC sorption data can be used for determining hydrogeochemical properties and predicting transport of organic contaminants in TACM-containing aquifer environments.

Keywords

References

  1. Allen-King, R.M., Grathwohl, P., and Ball, W.P., 2002, New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks, Adv. Water Resour., 25(8-12), 985-1016. https://doi.org/10.1016/S0309-1708(02)00045-3
  2. Allen-King, R.M., Groenevelt, H., Warren, C.J., and Mackay, D.M., 1996, Non-linear chlorinated-solvent sorption in four aquitards, J. Contam. Hydrol., 22(3-4), 203-221. https://doi.org/10.1016/0169-7722(95)00089-5
  3. Ball, W.P. and Roberts, P.V., 1991, Long-term sorption of halogenated organic-chemicals by aquifer material. 1. Equilibrium, Environ. Sci. Technol., 25(7), 1223-1237. https://doi.org/10.1021/es00019a002
  4. Binger, C.A., Martin, J.P., Allen-King, R.M., and Fowler, M., 1999, Variability of chlorinated-solvent sorption associated with oxidative weathering of kerogen, J. Contam. Hydrol., 40(2), 137-158. https://doi.org/10.1016/S0169-7722(99)00047-9
  5. Bohlke, J.K. and Krantz, D.E., 2003, Isotope geochemistry and chronology of offshore ground water beneath indian river bay, Delaware, Water-Resources Investigations Rep. 03-4192, US Geological Survey, Reston, VA.
  6. Bohlke, J.K. and Denver, J.M., 1995, Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland, Water Resour. Res., 31(9), 2319-2339. https://doi.org/10.1029/95WR01584
  7. Broholm, K. and Feenstra, S., 1995, Laboratory measurements of the aqueous solubility of mixtures of chlorinated solvents, Environ. Toxicol. Chem., 14(1), 9-15. https://doi.org/10.1002/etc.5620140102
  8. Busenberg, E. and Plummer, L.N., 1992, Use of chlorofluorocarbons ($CCL_{3}F$ and $CCL_{2}F_{2}$) as hydrologic tracers and age-dating tools: the alluvium and terrace system of Central Oklahoma, Water Resour. Res., 28(9), 2257-2283. https://doi.org/10.1029/92WR01263
  9. Busenberg, E. and Plummer, L.N., 2000, Dating young groundwater with sulphurhexafluoride - Natural and anthropogenic sources of sulphurhexafluoride, Water Resour. Res., 36(10), 3011-3030. https://doi.org/10.1029/2000WR900151
  10. Carmo, A.M., Hundal, L.S., and Thompson, M.L., 2000, Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients, Environ. Sci. Technol., 34(20), 4363-4369. https://doi.org/10.1021/es000968v
  11. Chapman, L.J. and Putnam, D.F., 1984, The Physiography of Southern Ontario. Special Volume 2, 3rd ed., Ontario Geological Survey, Toronto, 270 p.
  12. Chiou, C.T. and Kile, D.E., 1998, Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ. Sci. Technol., 32(3), 338-343. https://doi.org/10.1021/es970608g
  13. Chiou, C.T., Peters, L.J., and Freed, V.H., 1979, A physical concept of soil-water equilibria for nonionic organic compounds, Science, 206(4420), 831-832. https://doi.org/10.1126/science.206.4420.831
  14. Choung, S. and Allen-King, R.M., 2010, Can chlorofluorocarbons sorption to black carbon (char) affect groundwater age determinations?, Environ. Sci. Technol., 44(12), 4459-4464. https://doi.org/10.1021/es100620g
  15. Ciccioli, P., Cooper, W.T., Hammer, P.M., and Hayes, J.M., 1980, Organic solute-mineral surface interactions: A new method for determination of groundwater velocities, Water Resour. Res., 16(1), 217-223. https://doi.org/10.1029/WR016i001p00217
  16. Cook, P.G., 2003, Groundwater ages in fractured rock aquifers, In: Krasny-Hrkal-Bruthans (eds.), Proce. International Conf. Groundwater in Fractured Rocks, IHP-VI series on groundwater no. 7, Prague, p. 139-140.
  17. Cook, P.G. and Solomon, D.K., 1995, The transport of atmospheric trace gaes to the water table: Implications for groundwater dating with chlorofluorocarbons and Krypton-85, Water Resour. Res., 31(2), 263-270. https://doi.org/10.1029/94WR02232
  18. Cook, P.G., Solomon, D.K., Plummer, L.N., Busenberg, E., and Schiff, S.L., 1995, Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty, sand aquifer, Water Resour. Res., 31(3), 425-434. https://doi.org/10.1029/94WR02528
  19. Cook, P.G., Solomon, D.K., Sanford, W.E., Busenberg, E., Plummer, L.N., and Poreda, R.J., 1996, Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers, Water Resour. Res., 32(6), 1501-1509. https://doi.org/10.1029/96WR00354
  20. Cornelissen, G., Gustafsson, O., Bucheli, T.D., Jonker, M.T.O., Koelmans, A.A., and Van Noort, P.C.M., 2005, Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environ. Sci. Technol., 39(18), 6881-6895. https://doi.org/10.1021/es050191b
  21. Crittenden, J.C., Hand, D.W., Arora, H., and Lykins, B.W.J., 1987, Design considerations for GAC treatment of organic chemicals, J. Am. Water Works Assoc., 79(1), 74-82.
  22. Crittenden, J.C., Sanongraj, S., Bulloch, J.L., Hand, D.W., Rogers, T.N., Speth, T.F., and Ulmer, M., 1999, Correlation of aqueous-phase adsorption isotherms, Environ. Sci. Technol., 33(17), 2926-2933. https://doi.org/10.1021/es981082i
  23. Dunkle, S.A., Plummer, L.N., Busenberg, E., Phillips, P.J., Denver, J., Hamilton, P.A., Michel, R.L., and Coplen, T.B., 1993, Chlorofluorocarbons ($CCL_{3}F$ and $CCL_{2}F_{2}$) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic coastal plain, United States, Water Resour. Res., 29(12), 3837-3860. https://doi.org/10.1029/93WR02073
  24. Farrell, J. and Reinhard, M., 1994, Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 1. Isotherms, Environ. Sci. Technol., 28(1), 53-62. https://doi.org/10.1021/es00050a009
  25. Ferris, J.R., 1999, Singe and Co-solute Sorption of Chlorinated Solvents and Aromatic Hydrocarbons in Kerogen-containing Sediments, Washington State University, Pullman, WA.
  26. Goldberg, E.D., 1985, Black Carbon in the Environment: Properties and Distribution, John Wiley & Sons Inc., New York, 198 p.
  27. Grathwohl, P., 1990, Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations, Environ. Sci. Technol., 24(11), 1687-1693. https://doi.org/10.1021/es00081a010
  28. Grathwohl, P. and Reinhard, M., 1993, Desorption of trichloroethylene in aquifer material: Rate limitation at the grain scale, Environ. Sci. Technol., 27(12), 2360-2366. https://doi.org/10.1021/es00048a008
  29. Huang, W.L., Ping, P.A., Yu, Z.Q., and Fu, H.M., 2003, Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments, Appl. Geochem., 18(7), 955-972. https://doi.org/10.1016/S0883-2927(02)00205-6
  30. Huang, W., Young, T.M., Schlautman, M.A., Yu, H., and Weber, W. J., Jr., 1997, A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model, Environ. Sci. Technol., 31(6), 1703-1710. https://doi.org/10.1021/es960677f
  31. International Atomic Energy Agency (IAEA), 2006, Use of Chlorofluorocarbons in Hydrology: A Guidebook, Vienna, 277 p.
  32. Jackson, R.E., Lesage, S., and Priddle, M.W., 1992, Estimating the fate and mobility of CFC-113 in groundwater: Results from the Gloucester landfill project, In: S. Lesage and R. E. Jackson (eds.), Groundwater Contamination and Analysis at Hazardous Waste Sites, Marcel Dekker, NewYork, p. 511-526.
  33. Jeong, S., Wander, M.M., Kleineidam, S., Grathwohl, P., Ligouis, B., and Werth, C.J., 2008, The role of condensed carbonaceous materials on the sorption of hydrophobic organic contaminants in subsurface sediments, Environ. Sci. Technol., 42(5), 1458-1464. https://doi.org/10.1021/es0719879
  34. Johnston, C.T., Cook, P.G., Frape, S.K., and Plummer, L.N., 1998, Groundwater age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone, Ground Water, 36(1), 171-180. https://doi.org/10.1111/j.1745-6584.1998.tb01078.x
  35. Karapanagioti, H., Childs, J., and Sabatini, D., 2001, Impacts of heterogeneous organic matter on phenanthrene sorption: Different soil and sediment samples, Environ. Sci. Technol., 35(23), 4684-4690. https://doi.org/10.1021/es010654n
  36. Karickhoff, S.W., Brown, D.S., and Scott, T.A., 1979, Sorption of hydrophobic pollutants on natural sediments, Water Res., 13(3), 241-248. https://doi.org/10.1016/0043-1354(79)90201-X
  37. Kazemi, G.A., Lehr, J.H., and Perrochet, P., 2006, Groundwater Age, John Wiley & Sons, Inc., Hoboken, NewJersey, 325 p.
  38. Killops, S.D. and Killops, V.J., 2005, An Introduction to Organic Geochemistry, 2nd ed., Blackwell Publishing Ltd, Malden, 393 p.
  39. Kleineidam, S., Rugner, H., Ligouis, B., and Grathwohl, P., 1999, Organic matter facies and equilibrium sorption of phenanthrene, Environ. Sci. Technol., 33(10), 1637-1644. https://doi.org/10.1021/es9806635
  40. Kleineidam, S., Schuth, C., and Grathwohl, P., 2002, Solubilitynormalized combined adsorption-partitioning sorption isotherms for organic pollutants. Environ. Sci. Technol., 36(21), 4689-4697. https://doi.org/10.1021/es010293b
  41. Koelmans, A.A., Jonker, M.T.O., Cornelissen, G., Bucheli, T.D., Van Noort, P.C.M., and Gustafsson, O., 2006, Black carbon: The reverse of its dark side, Chemosphere, 63(3), 365-377. https://doi.org/10.1016/j.chemosphere.2005.08.034
  42. Leboeuf, E.J. and Weber, W.J.J., 1997, A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: Discovery of a humic acid glass transition and an argument for polymer-based model, Environ. Sci. Technol., 31(6), 1697-1702. https://doi.org/10.1021/es960626i
  43. Lee, K.-S., Koh, D.-C., Kim, Y., and Yum, B.-W., 2008, A review of groundwater dating with environmental tracers, Journal of the Geological Society of Korea, 44(4), 573-588 (in Korean with English abstract).
  44. Lee, L.S., Rao, P.S.C., Brusseau, M.L., and Ogwada, R.A., 1988, Nonequilibrium sorption of organic contaminants during flow through columns of aquifer materials, Environ. Chem., 7(10), 779-793. https://doi.org/10.1002/etc.5620071001
  45. Luthy, R.G., Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gschwend, P.M., Pignatello, J.J., Reinhard, M., Traina, S.J., Weber, W.J.J., and Westall, J.C., 1997, Sequestration of hydrophobic organic contaminants by geosorbents, Environ. Sci. Technol., 31(12), 3341-3347. https://doi.org/10.1021/es970512m
  46. Mackay, D., Shiu, W.Y., and Ma, K.C., 2006, Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed., CRC Press, Boca Raton, FL, 4216 p.
  47. Manes, M., 1998, Activated carbon adsorption fundamentals, In: R. A. Meyers (ed.), Encyclopedia of Environmental Analysis and Remediation, Wiley, New York.
  48. Marshall, I.B., Dumanski, J., Huffman, E.C., and Lajoie, P.G., 1979, Soils, Capability and Land Use in the Ottawa Urban Fringe, Land Resource Research Institute, Ontario, 59 p.
  49. Nguyen, T.H. and Ball, W.P., 2006, Absorption and adsorption of hydrophobic organic contaminants to diesel and hexane soot, Environ. Sci. Technol., 40(9), 2958-2964. https://doi.org/10.1021/es052121a
  50. Nguyen, T.H., Cho, H.H., Poster, D.L., and Ball, W.P., 2007, Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char, Environ. Sci. Technol., 41(4), 1212-1217. https://doi.org/10.1021/es0617845
  51. Ong, S.K. and Lion, L.W., 1991, Effects of soil properties and moisture on the sorption of trichloroethylene vapor, Water Res., 25(1), 29-36. https://doi.org/10.1016/0043-1354(91)90095-8
  52. Oster, H., Sonntag, C., and Munnich, K.O., 1996, Groundwater age dating with chlorofluorocarbons, Water Resour. Res., 32(10), 2989-3001. https://doi.org/10.1029/96WR01775
  53. Pavlostathis, S.G. and Jaglal, K., 1991, Desorptive behavior of trichloroethylene in contaminated soil, Environ. Sci. Technol., 25(2), 274-279. https://doi.org/10.1021/es00014a009
  54. Pignatello, J.J. and Xing, B.S., 1996, Mechanisms of slow sorption of organic chemicals to natural particles, Environ. Sci. Technol., 30(1), 1-11. https://doi.org/10.1021/es940683g
  55. Piwoni, M.D. and Banerjee, P., 1989, Sorption of volatile organic solvents from aqueous solution onto subsurface solids, J. Contam. Hydrol., 4(2), 163-179. https://doi.org/10.1016/0169-7722(89)90019-3
  56. Plummer, L.N. and Busenberg, E., 2000, Chlorofluorocarbons, In: P. G. Cook and A. L. Herczeg (eds.), Environmental Tracers in Subsurface Hydrology, Kluwer Academic Publishers, Boston, p. 441-478.
  57. Plummer, L.N., Busenberg, E., Bohlke, J.K., Nelms, D.L., Michel, R.L., and Schlosser, P., 2001, Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach, Chem. Geol., 179(1-4), 93- 111. https://doi.org/10.1016/S0009-2541(01)00317-5
  58. Ran, Y., Xing, B.S., Rao, P.S.C., and Fu, J.M., 2004, Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate, Environ. Sci. Technol., 38(16), 4340-4348. https://doi.org/10.1021/es035168+
  59. Reilly, T.E., Plummer, L.N., Phillips, P.J., and Busenberg, E., 1994, The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer, Water Resour. Res., 30(2), 421-433. https://doi.org/10.1029/93WR02655
  60. Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M., 2003, Environmental Organic Chemistry, 2nd ed., John Wiley & Sons, Hoboken, NJ, 1313 p.
  61. Szabo, Z., Rice, D.E., Plummer, L.N., Busenberg, E., and Drenkard, S., 1996, Age dating of shallow groundwater with chlorofluorocarbons, tritium helium 3, and flow path analysis, southern New Jersey coastal plain, Water Resour. Res., 32(4), 1023-1038. https://doi.org/10.1029/96WR00068
  62. Tissot, B.P. and Welte, D.H., 1984, Petroleum Formation and Occurrence, 2nd ed., Springer-Verlag, NewYork, 699 p.
  63. US Environmental Protection Agency (US EPA), 1996, Soil screening guidance, Technical background document EPA/540/R-95/128, In US Govt. Print Office, Washington, DC.
  64. Vandenbroucke, M. and Largeau, C., 2007, Kerogen origin, evolution and structure, Org. Geochem., 38(5), 719-833. https://doi.org/10.1016/j.orggeochem.2007.01.001
  65. Wang, G., Allen-King, R.M., Choung, S., Feenstra, S., Watson, R., and Komine, M., 2012, A practical measurement strategy to estimate nonlinear chlorinated solvent sorption in low foc sediments, Ground Water Monit. R., doi: 10.1111/j1745--6592.2012.01413.x.
  66. Weber, W.J.J., McGinley, P.M., and Katz, L.E., 1992, A distributed reactivity model for sorption by soils and sediments. 1. Conceptual Basis and Equilibrium Assessments, Environ. Sci. Technol., 26(10), 1955-1962. https://doi.org/10.1021/es00034a012
  67. Weissmann, G.S., Zhang, Y., Labolle, E.M., and Fogg, G.E., 2002, Dispersion of groundwater age in an alluvial aquifer system, Water Resour. Res., 38(10), 1198-1211.
  68. Xia, G.S. and Ball, W.P., 1999, Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent, Environ. Sci. Technol., 33(2), 262-269. https://doi.org/10.1021/es980581g
  69. Xing, B. and Pignatello, J.J., 1997, Dual-mode sorption of lowpolarity compounds in glassy poly(vinyl chloride) and soil organic matter, Environ. Sci. Technol., 31(3), 792-799. https://doi.org/10.1021/es960481f