Browse > Article
http://dx.doi.org/10.7857/JSGE.2012.17.6.059

Potential Application of Environmental Tracer in Hydrogeochemistry Using Sorption Properties  

Choung, Sungwook (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Chang, Seeun (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Kim, Minkyung (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Kim, Sungpyo (Department of Environmental Engineering, Korea University)
Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Publication Information
Journal of Soil and Groundwater Environment / v.17, no.6, 2012 , pp. 59-68 More about this Journal
Abstract
This study provided sorption properties of chlorofluorocarbons (CFCs), and elucidated potential application of CFC sorption data in hydrogeochemistry. Prior sorption studies were reviewed for hydrophobic organic compounds similar to the CFCs, because there were only few CFC sorption studies. The CFCs are regarded as relatively conservative chemicals in groundwater environments based on their moderate hydrophobicity. However, thermally altered carbonaceous matter (TACM) can significantly increase sorption capacity and nonlinearity for hydrophobic organic compounds such as CFCs, compared to general soil organic matter. CFC sorption behavior are close to the sorption for reviewed organic chemicals. Therefore, the CFC sorption data can be used for determining hydrogeochemical properties and predicting transport of organic contaminants in TACM-containing aquifer environments.
Keywords
Chlorofluorocarbons; Sorption; Carbonaceous matter; Groundwater age; Hydrophobic organic compounds;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Busenberg, E. and Plummer, L.N., 2000, Dating young groundwater with sulphurhexafluoride - Natural and anthropogenic sources of sulphurhexafluoride, Water Resour. Res., 36(10), 3011-3030.   DOI
2 Carmo, A.M., Hundal, L.S., and Thompson, M.L., 2000, Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients, Environ. Sci. Technol., 34(20), 4363-4369.   DOI
3 Chapman, L.J. and Putnam, D.F., 1984, The Physiography of Southern Ontario. Special Volume 2, 3rd ed., Ontario Geological Survey, Toronto, 270 p.
4 Chiou, C.T. and Kile, D.E., 1998, Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ. Sci. Technol., 32(3), 338-343.   DOI   ScienceOn
5 Chiou, C.T., Peters, L.J., and Freed, V.H., 1979, A physical concept of soil-water equilibria for nonionic organic compounds, Science, 206(4420), 831-832.   DOI   ScienceOn
6 Choung, S. and Allen-King, R.M., 2010, Can chlorofluorocarbons sorption to black carbon (char) affect groundwater age determinations?, Environ. Sci. Technol., 44(12), 4459-4464.   DOI
7 Ciccioli, P., Cooper, W.T., Hammer, P.M., and Hayes, J.M., 1980, Organic solute-mineral surface interactions: A new method for determination of groundwater velocities, Water Resour. Res., 16(1), 217-223.   DOI
8 Cook, P.G., 2003, Groundwater ages in fractured rock aquifers, In: Krasny-Hrkal-Bruthans (eds.), Proce. International Conf. Groundwater in Fractured Rocks, IHP-VI series on groundwater no. 7, Prague, p. 139-140.
9 Cook, P.G. and Solomon, D.K., 1995, The transport of atmospheric trace gaes to the water table: Implications for groundwater dating with chlorofluorocarbons and Krypton-85, Water Resour. Res., 31(2), 263-270.   DOI
10 Cook, P.G., Solomon, D.K., Plummer, L.N., Busenberg, E., and Schiff, S.L., 1995, Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty, sand aquifer, Water Resour. Res., 31(3), 425-434.   DOI   ScienceOn
11 Cook, P.G., Solomon, D.K., Sanford, W.E., Busenberg, E., Plummer, L.N., and Poreda, R.J., 1996, Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers, Water Resour. Res., 32(6), 1501-1509.   DOI
12 Cornelissen, G., Gustafsson, O., Bucheli, T.D., Jonker, M.T.O., Koelmans, A.A., and Van Noort, P.C.M., 2005, Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environ. Sci. Technol., 39(18), 6881-6895.   DOI
13 Crittenden, J.C., Hand, D.W., Arora, H., and Lykins, B.W.J., 1987, Design considerations for GAC treatment of organic chemicals, J. Am. Water Works Assoc., 79(1), 74-82.
14 Crittenden, J.C., Sanongraj, S., Bulloch, J.L., Hand, D.W., Rogers, T.N., Speth, T.F., and Ulmer, M., 1999, Correlation of aqueous-phase adsorption isotherms, Environ. Sci. Technol., 33(17), 2926-2933.   DOI   ScienceOn
15 Dunkle, S.A., Plummer, L.N., Busenberg, E., Phillips, P.J., Denver, J., Hamilton, P.A., Michel, R.L., and Coplen, T.B., 1993, Chlorofluorocarbons ($CCL_{3}F$ and $CCL_{2}F_{2}$) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic coastal plain, United States, Water Resour. Res., 29(12), 3837-3860.   DOI   ScienceOn
16 Farrell, J. and Reinhard, M., 1994, Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 1. Isotherms, Environ. Sci. Technol., 28(1), 53-62.   DOI
17 Ferris, J.R., 1999, Singe and Co-solute Sorption of Chlorinated Solvents and Aromatic Hydrocarbons in Kerogen-containing Sediments, Washington State University, Pullman, WA.
18 Goldberg, E.D., 1985, Black Carbon in the Environment: Properties and Distribution, John Wiley & Sons Inc., New York, 198 p.
19 Grathwohl, P., 1990, Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations, Environ. Sci. Technol., 24(11), 1687-1693.   DOI
20 Grathwohl, P. and Reinhard, M., 1993, Desorption of trichloroethylene in aquifer material: Rate limitation at the grain scale, Environ. Sci. Technol., 27(12), 2360-2366.   DOI
21 Huang, W.L., Ping, P.A., Yu, Z.Q., and Fu, H.M., 2003, Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments, Appl. Geochem., 18(7), 955-972.   DOI   ScienceOn
22 Huang, W., Young, T.M., Schlautman, M.A., Yu, H., and Weber, W. J., Jr., 1997, A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model, Environ. Sci. Technol., 31(6), 1703-1710.   DOI
23 International Atomic Energy Agency (IAEA), 2006, Use of Chlorofluorocarbons in Hydrology: A Guidebook, Vienna, 277 p.
24 Jackson, R.E., Lesage, S., and Priddle, M.W., 1992, Estimating the fate and mobility of CFC-113 in groundwater: Results from the Gloucester landfill project, In: S. Lesage and R. E. Jackson (eds.), Groundwater Contamination and Analysis at Hazardous Waste Sites, Marcel Dekker, NewYork, p. 511-526.
25 Jeong, S., Wander, M.M., Kleineidam, S., Grathwohl, P., Ligouis, B., and Werth, C.J., 2008, The role of condensed carbonaceous materials on the sorption of hydrophobic organic contaminants in subsurface sediments, Environ. Sci. Technol., 42(5), 1458-1464.   DOI
26 Johnston, C.T., Cook, P.G., Frape, S.K., and Plummer, L.N., 1998, Groundwater age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone, Ground Water, 36(1), 171-180.   DOI
27 Karapanagioti, H., Childs, J., and Sabatini, D., 2001, Impacts of heterogeneous organic matter on phenanthrene sorption: Different soil and sediment samples, Environ. Sci. Technol., 35(23), 4684-4690.   DOI
28 Karickhoff, S.W., Brown, D.S., and Scott, T.A., 1979, Sorption of hydrophobic pollutants on natural sediments, Water Res., 13(3), 241-248.   DOI   ScienceOn
29 Kazemi, G.A., Lehr, J.H., and Perrochet, P., 2006, Groundwater Age, John Wiley & Sons, Inc., Hoboken, NewJersey, 325 p.
30 Killops, S.D. and Killops, V.J., 2005, An Introduction to Organic Geochemistry, 2nd ed., Blackwell Publishing Ltd, Malden, 393 p.
31 Kleineidam, S., Rugner, H., Ligouis, B., and Grathwohl, P., 1999, Organic matter facies and equilibrium sorption of phenanthrene, Environ. Sci. Technol., 33(10), 1637-1644.   DOI
32 Kleineidam, S., Schuth, C., and Grathwohl, P., 2002, Solubilitynormalized combined adsorption-partitioning sorption isotherms for organic pollutants. Environ. Sci. Technol., 36(21), 4689-4697.   DOI
33 Koelmans, A.A., Jonker, M.T.O., Cornelissen, G., Bucheli, T.D., Van Noort, P.C.M., and Gustafsson, O., 2006, Black carbon: The reverse of its dark side, Chemosphere, 63(3), 365-377.   DOI
34 Leboeuf, E.J. and Weber, W.J.J., 1997, A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: Discovery of a humic acid glass transition and an argument for polymer-based model, Environ. Sci. Technol., 31(6), 1697-1702.   DOI
35 Lee, K.-S., Koh, D.-C., Kim, Y., and Yum, B.-W., 2008, A review of groundwater dating with environmental tracers, Journal of the Geological Society of Korea, 44(4), 573-588 (in Korean with English abstract).   과학기술학회마을
36 Lee, L.S., Rao, P.S.C., Brusseau, M.L., and Ogwada, R.A., 1988, Nonequilibrium sorption of organic contaminants during flow through columns of aquifer materials, Environ. Chem., 7(10), 779-793.   DOI
37 Luthy, R.G., Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gschwend, P.M., Pignatello, J.J., Reinhard, M., Traina, S.J., Weber, W.J.J., and Westall, J.C., 1997, Sequestration of hydrophobic organic contaminants by geosorbents, Environ. Sci. Technol., 31(12), 3341-3347.   DOI   ScienceOn
38 Mackay, D., Shiu, W.Y., and Ma, K.C., 2006, Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed., CRC Press, Boca Raton, FL, 4216 p.
39 Manes, M., 1998, Activated carbon adsorption fundamentals, In: R. A. Meyers (ed.), Encyclopedia of Environmental Analysis and Remediation, Wiley, New York.
40 Marshall, I.B., Dumanski, J., Huffman, E.C., and Lajoie, P.G., 1979, Soils, Capability and Land Use in the Ottawa Urban Fringe, Land Resource Research Institute, Ontario, 59 p.
41 Nguyen, T.H. and Ball, W.P., 2006, Absorption and adsorption of hydrophobic organic contaminants to diesel and hexane soot, Environ. Sci. Technol., 40(9), 2958-2964.   DOI   ScienceOn
42 Nguyen, T.H., Cho, H.H., Poster, D.L., and Ball, W.P., 2007, Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char, Environ. Sci. Technol., 41(4), 1212-1217.   DOI
43 Ong, S.K. and Lion, L.W., 1991, Effects of soil properties and moisture on the sorption of trichloroethylene vapor, Water Res., 25(1), 29-36.   DOI
44 Oster, H., Sonntag, C., and Munnich, K.O., 1996, Groundwater age dating with chlorofluorocarbons, Water Resour. Res., 32(10), 2989-3001.   DOI
45 Pavlostathis, S.G. and Jaglal, K., 1991, Desorptive behavior of trichloroethylene in contaminated soil, Environ. Sci. Technol., 25(2), 274-279.   DOI
46 Pignatello, J.J. and Xing, B.S., 1996, Mechanisms of slow sorption of organic chemicals to natural particles, Environ. Sci. Technol., 30(1), 1-11.   DOI   ScienceOn
47 Piwoni, M.D. and Banerjee, P., 1989, Sorption of volatile organic solvents from aqueous solution onto subsurface solids, J. Contam. Hydrol., 4(2), 163-179.   DOI
48 Plummer, L.N. and Busenberg, E., 2000, Chlorofluorocarbons, In: P. G. Cook and A. L. Herczeg (eds.), Environmental Tracers in Subsurface Hydrology, Kluwer Academic Publishers, Boston, p. 441-478.
49 Plummer, L.N., Busenberg, E., Bohlke, J.K., Nelms, D.L., Michel, R.L., and Schlosser, P., 2001, Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach, Chem. Geol., 179(1-4), 93- 111.   DOI
50 Ran, Y., Xing, B.S., Rao, P.S.C., and Fu, J.M., 2004, Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate, Environ. Sci. Technol., 38(16), 4340-4348.   DOI
51 Reilly, T.E., Plummer, L.N., Phillips, P.J., and Busenberg, E., 1994, The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer, Water Resour. Res., 30(2), 421-433.   DOI
52 Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M., 2003, Environmental Organic Chemistry, 2nd ed., John Wiley & Sons, Hoboken, NJ, 1313 p.
53 Szabo, Z., Rice, D.E., Plummer, L.N., Busenberg, E., and Drenkard, S., 1996, Age dating of shallow groundwater with chlorofluorocarbons, tritium helium 3, and flow path analysis, southern New Jersey coastal plain, Water Resour. Res., 32(4), 1023-1038.   DOI
54 Tissot, B.P. and Welte, D.H., 1984, Petroleum Formation and Occurrence, 2nd ed., Springer-Verlag, NewYork, 699 p.
55 US Environmental Protection Agency (US EPA), 1996, Soil screening guidance, Technical background document EPA/540/R-95/128, In US Govt. Print Office, Washington, DC.
56 Vandenbroucke, M. and Largeau, C., 2007, Kerogen origin, evolution and structure, Org. Geochem., 38(5), 719-833.   DOI
57 Wang, G., Allen-King, R.M., Choung, S., Feenstra, S., Watson, R., and Komine, M., 2012, A practical measurement strategy to estimate nonlinear chlorinated solvent sorption in low foc sediments, Ground Water Monit. R., doi: 10.1111/j1745--6592.2012.01413.x.
58 Weber, W.J.J., McGinley, P.M., and Katz, L.E., 1992, A distributed reactivity model for sorption by soils and sediments. 1. Conceptual Basis and Equilibrium Assessments, Environ. Sci. Technol., 26(10), 1955-1962.   DOI
59 Weissmann, G.S., Zhang, Y., Labolle, E.M., and Fogg, G.E., 2002, Dispersion of groundwater age in an alluvial aquifer system, Water Resour. Res., 38(10), 1198-1211.
60 Xia, G.S. and Ball, W.P., 1999, Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent, Environ. Sci. Technol., 33(2), 262-269.   DOI
61 Xing, B. and Pignatello, J.J., 1997, Dual-mode sorption of lowpolarity compounds in glassy poly(vinyl chloride) and soil organic matter, Environ. Sci. Technol., 31(3), 792-799.   DOI   ScienceOn
62 Allen-King, R.M., Grathwohl, P., and Ball, W.P., 2002, New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks, Adv. Water Resour., 25(8-12), 985-1016.   DOI   ScienceOn
63 Allen-King, R.M., Groenevelt, H., Warren, C.J., and Mackay, D.M., 1996, Non-linear chlorinated-solvent sorption in four aquitards, J. Contam. Hydrol., 22(3-4), 203-221.   DOI
64 Ball, W.P. and Roberts, P.V., 1991, Long-term sorption of halogenated organic-chemicals by aquifer material. 1. Equilibrium, Environ. Sci. Technol., 25(7), 1223-1237.   DOI
65 Binger, C.A., Martin, J.P., Allen-King, R.M., and Fowler, M., 1999, Variability of chlorinated-solvent sorption associated with oxidative weathering of kerogen, J. Contam. Hydrol., 40(2), 137-158.   DOI
66 Bohlke, J.K. and Krantz, D.E., 2003, Isotope geochemistry and chronology of offshore ground water beneath indian river bay, Delaware, Water-Resources Investigations Rep. 03-4192, US Geological Survey, Reston, VA.
67 Bohlke, J.K. and Denver, J.M., 1995, Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland, Water Resour. Res., 31(9), 2319-2339.   DOI   ScienceOn
68 Broholm, K. and Feenstra, S., 1995, Laboratory measurements of the aqueous solubility of mixtures of chlorinated solvents, Environ. Toxicol. Chem., 14(1), 9-15.   DOI
69 Busenberg, E. and Plummer, L.N., 1992, Use of chlorofluorocarbons ($CCL_{3}F$ and $CCL_{2}F_{2}$) as hydrologic tracers and age-dating tools: the alluvium and terrace system of Central Oklahoma, Water Resour. Res., 28(9), 2257-2283.   DOI