• Title/Summary/Keyword: As(III) (arsenite)

Search Result 37, Processing Time 0.032 seconds

The Effect of Irradiation Distance/Volume on Sonochemical Oxidation of Arsenite (초음파를 이용한 As(III) 산화 시 조사 거리/부피의 영향)

  • Kim, Eunkyung;Son, Younggyu;Cui, Mingcan;Khim, Jeehyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • The objective of this study was to find the frequency that most effectively generates hydroxyl radical and to investigate the effect of solution volume on the oxidation of arsenite (As[III]) under the determined frequency. Based on the cavitation yield for hydrogen peroxide, hydroxyl radical is formed most effectively under the frequency of 300 kHz. The experiment was performed with various solution volumes (334, 690, 1,046, and 1,401 mL) under 300 kHz. Results showed that as solution volume increased, kinetic constant for arsenite oxidation decreased. However, cavitation yield for arsenite decreased in small volumes (334, and 690 mL) but maintained or increased in large volumes (1,046, and 1,401 mL) over a set period of time (10, 30, and 60 min). Based on the kinetic constant result, it is more advantageous to oxidize arsenite in small volumes. However, according to the cavitation yield for arsenite, it is applicable to oxidize arsenite in large volumes over a long period of time.

X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10 (pH 4와 10에서의 3가 비소와 Two-Line Ferrihydrite의 표면반응에 대한 X선 흡수 분광 연구)

  • Lee, Woo-Chun;Choi, Sun-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.73-82
    • /
    • 2011
  • X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 ${\AA}$, respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is $AsO_3$. The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear comer-sharing ($^2C$) and the mixture of bidentate mononuclear edge sharing ($^2E$) and $^2C$ appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.

Isolation and ars Detoxification of Arsenite-Oxidizing Bacteria from Abandoned Arsenic-Contaminated Mines

  • Chang, Jin-Soo;Yoon, In-Ho;Kim, Kyoung-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.812-821
    • /
    • 2007
  • The ecosystems of certain abandoned mines contain arsenic-resistant bacteria capable of performing detoxification when an ars gene is present in the bacterial genome. The ars gene has already been isolated from Pseudomonas putida and identified as a member of the membrane transport regulatory deoxyribonucleic acid family. The arsenite-oxidizing bacterial strains isolated in the present study were found to grow in the presence of 66.7 mM sodium arsenate($V;\;Na_2HAsO_4{\cdot}7H_2O$), yet experienced inhibited growth when the sodium arsenite($III;\;NaAsO_2$) concentration was higher than 26 mM. Batch experiment results showed that Pseudomonas putida strain OS-5 completely oxidized 1 mM of As(III) to As(V) within 35 h. An arsB gene encoding a membrane transport regulatory protein was observed in arsenite-oxidizing Pseudomonas putida strain OS-5, whereas arsB, arsH, and arrA were detected in strain OS-19, arsD and arsB were isolated from strain RW-18, and arsR, arsD, and arsB were found in E. coli strain OS-80. The leader gene of arsR, -arsD, was observed in a weak acid position. Thus, for bacteria exposed to weak acidity, the ars system may cause changes to the ecosystems of As-contaminated mines. Accordingly, the present results suggest that arsR, arsD, arsAB, arsA, arsB, arsC, arsH, arrA, arrB, aoxA, aoxB, aoxC, aoxD, aroA, and aroB may be useful for arsenite-oxidizing bacteria in abandoned arsenic-contaminated mines.

Arsenite Oxidation by Bacillus sp. Strain SeaH-As22w Isolated from Coastal Seawater in Yeosu Bay

  • Chang, Jin-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.15-21
    • /
    • 2010
  • This study was conducted to evaluated seawater bacteria and their seasonal characteristics in the arsenic contaminated coastal seawater of Yeosu Bay, the Republic of Korea. Arsenite-oxidizing bacteria play an important role in the seawater of the arsenic contaminated bay, with a variety of arsenic resistance system (ars) genotypes being present during summer. Specifically, Bacillus sp. strain SeaH-As22w (FJ607342), isolated from the bay, were found to contain the arsB, arrA and aoxR type operons, which are involved in arsenic resistance. The isolated bacteria showed relatively high tolerance to sodium arsenite (III; $NaAsO_2$) at concentrations as high as 50 mM. Additionally, batch seawater experiments showed that Bacillus sp. strain SeaH-As22w completely oxidized 1 mM of As (III) to As (V) within 10 days. Ecologically, the arsenic-oxidizing potential plays an important role in arsenic toxicity and mobility in As-contaminated coastal seawater of Yeosu Bay during all seasons because it facilitates the activity of Bacillus sp. groups.

Photocatalytic Oxidation of Arsenite Using Goethite and UVC-Lamp (침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Arsenic (As) is known to be the most toxic element and frequently detected in groundwater environment. Inorganic As exists as arsenite [As(III)] and arsenate [As(V)] in reduced and oxidized environments, respectively. It has been reported that the toxicity of arsenite is much higher than that of arsenate and furthermore arsenite shows relatively higher mobility in aqueous environments. For this reason, there have been numerous researches on the process for oxidation of arsenite to arsenate to reduce the toxicity of arsenic. In particular, photooxidation has been considered to be simple, economical, and efficient to attain such goal. This study was conducted to evaluate the applicability of naturally-occurring goethite as a photocatalyst to substitute for $TiO_2$ which has been mostly used in the photooxidation processes so far. In addition, the effects of several factors on the overall performance of arsenite photocatalytic oxidation process were evaluated. The results show that the efficiency of the process was affected by total concentration of dissolved cations rather than by the kind of those cations and also the relatively higher pH conditions seemed to be more favorable to the process. In the case of coexistence of arsenite and arsenate, the removal tendency by adsorption onto goethite appeared to be different between arsenite and arsenate due to their different affinities with goethite, but any effect on the photocatalytic oxidation of arsenite was not observed. In terms of effect of humic acid on the process, it is likely that the higher concentration of humic acid reduced the overall performance of the arsenite photocatalytic oxidation as a result of competing interaction of activated oxygen species, such as hydroxyl and superoxide radicals, with arsenite and humic acid. In addition, it is revealed that the injection of oxygen gas improved the process because oxygen contributes to arsenite oxidation as an electron acceptor. Based on the results of the study, consequently, the photocatalytic oxidation of aqueous arsenite using goethite seems to be greatly feasible with the optimization of process.

Photocatalytic Oxidation of Arsenite Using Goethite and UV LED (침철석과 자외선 LED를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Arsenic (As) has been considered as the most toxic one among various hazardous materials and As contamination can be caused naturally and anthropogenically. Major forms of arsenic in groundwater are arsenite [(As(III)] and/or arsenate [(As(V)], depending on redox condition: arsenite and arsenate are predominant in reduced and oxidized environments, respectively. Because arsenite is much more toxic and mobile than arsenate, there have been a number of studies on the reduction of its toxicity through oxidation of As(III) to As(V). This study was initiated to develop photocatalytic oxidation process for treatment of groundwater contaminated with arsenite. The performance of two types of light sources (UV lamp and UV LED) was compared and the feasibility of goethite as a photocatalyst was evaluated. The highest removal efficiency of the process was achieved at a goethite dose of 0.05 g/L. Based on the comparison of oxidation efficiencies of arsenite between two light sources, the apparent performance of UV LED was inferior to that of UV lamp. However, when the results were appraised on the basis of their emitting UV irradiation, the higher performance was achieved by UV LED than by UV lamp. This study demonstrates that environmentally friendly process of goethite-catalytic photo-oxidation without any addition of foreign catalyst is feasible for the reduction of arsenite in groundwater containing naturally-occurring goethite. In addition, this study confirms that UV LED can be used in the photo-oxidation of arsenite as an alternative light source of UV lamp to remedy the drawbacks of UV lamp, such as long stabilization time, high electrical power consumption, short lifespan, and high heat output requiring large cooling facilities.

Study on Adsorption Features of Arsenic onto Lepidocrocite (레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명)

  • Lee, Woo-Chun;Jeong, Hyeon-Su;Kim, Ju-Yong;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.42 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Systematic studies are performed for arsenic adsorption on synthesized lepidocrocite. The synthesized lepidocrocite with high surface area of $94.8\;g/m^2$ has shown that the point of zero charge(PZC) is 6.57 determined by potentiometric titration, suggestive of high capacity of arsenic removal. Results show that arsenite[As(III)] uptake by synthesized lepidocrocite is greater than that of arsenate[As(V)] at pH $2{\sim}12$, indicating that the lepidocrocite has high affinity toward arsenite rather than arsenate. Adsorption of arsenate decreases with increasing pH from 2 to 12, whereas arsenite sorption increases until pH 8.0, and then decreases dramatically with increasing pH, suggesting that changes in surface charge of the lepidocrocite as a function of pH playa important role in aresinc uptake by the lepidocrocite. Upon kinetic experiments, our results demonstrate that both arsenite and arsenate sorption on the lepidocrocite increases rapidly for the first 4 h followed by little changes during the duration of the experiment, showing that adsorption plays a key role in aresenic uptake by the lepidocrocite. Our results also show that power function and elovich models are the best fit for the adsorption kinetics of arsenite and aesenate on the lepidocrocite.

Desorption and Oxidation Properties of Saturated Arsenate on LDHs (하이드로탈사이트류에 포화 흡착된 비소(V)의 탈착 및 산화 특성)

  • Park, Soon-Geel;Jung, Yong-Jun
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1015-1021
    • /
    • 2015
  • In order to establish the design parameters of adsorption for arsenic compounds with hydrotalcite including chlorine ion, the basic properties of adsorption and desorption as well as the oxidation of As (III) were examined in batch tests. The maximum adsorption capacities of arsenite and arsenate were 6.2 mg-As(III)/g and 103 mg-As (V)/g, respectively. Although 80.4% of maximum desorption was shown in 20% NaOH solution, 5~10% of NaOH was recommended considering operating benefits, where the proper condition of the desorption was in the range of 73% to 80%. The most suitable desorption condition was in the combination of NaCl (10~20%) and NaOH (5~10%). Within 2 minutes, As (III) was easily oxidized to As (V) with 0.0001 N KMnO4, where the maximum oxidization ratio was shown to 98.9%.

Investigation of As(III) Sorption by Sand and Alumina under Anoxic Conditions

  • Lee, Seungyeol;Park, Minji;Jeong, Hoon Young
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.532-538
    • /
    • 2022
  • Under anoxic conditions, this study investigated removal of dissolved As(III) by Si and Al oxides including natural sand, chemically washed sand (silica), alumina, and activated alumina. Despite the similar surface area, natural sand showed greater extents of As(III) sorption than chemically washed sand. This was likely due to the high reactivity of Fe(oxyhydr)oxide impurities on the surface of natural sand. For both sands, As(III) sorption was the greatest at pH 7.1, in agreement with the weakly dissociating tendency of arsenous acid. Also, the least sorption was observed at pH 9.6. At basic pH, elevated silicate, which originated from the dissolution of silica in sands, would compete with As(III) for sorption. Due to the highest surface area, activated alumina was found to quantitatively immobilize the initially added As(III) (6.0×10-7-2.0×10-5 M). Alumina showed As(III) sorption compared to or greater than chemically washed sand, although the former had less than 6% of the surface of area the latter. The greater reactivity of alumina than chemically washed sand can be explained by using the shared charge of oxygen.