DOI QR코드

DOI QR Code

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator

가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성

  • Kim, Tae-Wan (Research Institute of Industrial Technology, Pusan National University)
  • 김태완 (부산대학교 생산기술연구소)
  • Received : 2012.08.31
  • Accepted : 2012.11.01
  • Published : 2012.12.31

Abstract

This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.

이 연구는 혼합 알칼리 활성화 슬래그 모르타르의 압축강도에 미치는 영향에 관한 것이다. 활성화제의 효과는 활성화제의 종류, 농도 등이 강도에 영향을 미치는 것으로 알려져있다. 혼합 활성화제는 5가지 가소성 알칼리(수산화나트륨, 수산화칼슘, 수산화마그네슘, 수산화알루미늄, 수산화칼륨)와 탄산나트륨($Na_2CO_3$)를 혼합하였다. 배함은 각 활성화제를 1M, 2M, 그리고 3M의 서로 다른 농도로 하였다. 압축강도 결과는 혼합 알칼리 활성화 슬래그 모르타르는 탄산나트륨의 농도가 증가하면 증가하는 것으로 나타났다. 혼합 활성화제를 사용한 알칼리 활성화 슬래그 모르타르는 모든 재령과 시험체가 탄산나트륨을 혼합하지 않은 컨트롤 케이스보다 향상된 강도를 나타내었다. 전자주사현미경(SEM) 관찰 결과 활성화 반응으로 C-S-H와 aluminusilicate gel이 생성된 것을 볼 수 있었다.

Keywords

References

  1. Caijun Shi, A. Fernandez Jimenez, and Angel Palomo, "New cements for the 21st century: The pursuit of an alternative to Portland cement," Cement and Concrete Research, Vol. 41, 2011, pp. 750-763. (doi: http://dx.doi.org/10.1016/j.cemconres.2011.03.016)
  2. Roy, D. M., "Alkali-Activated Cements: Opportunities and Challenges," Cement and Concrete Research, Vol. 29, 1999, pp. 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  3. Palomo, A., Grutzeck, M. W., and Blanco, M. T., "Alkali Activated Fly Ashes: A Cement for the Future," Cement and Concrete Research, Vol. 29, 1999, pp. 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  4. Wang, S., Pu, X. C., Scrivener, K. L., and Pratt, P. L., "Alklai-Activated Slag Cement and Concrete; a Review of Properties and Problems," Advances in Cement Research, Vol. 7, 1995, pp. 93-102. https://doi.org/10.1680/adcr.1995.7.27.93
  5. Lee, C. T., "A Study on Properties of Non-Cement Mortar with Alkali Activators," Graduate School Chonnam National University, 2010, pp. 53-54.
  6. Kim, G. W., Kim, B. J., Yang, K. H., and Song, J. K., "Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar," Journal of the Korea Concrete Institute, Vol. 24, No. 2, 2012, pp. 137-145. (doi: http://dx.doi.org/10.4334/JKCI.2012. 24.2.137)
  7. Ahn, J, W., Cho, J. S., Kim, H. S., Han, G. C., Han, K. S., and Kim, H., "Activation Property of Blast Furnace Slag by Alkaline Activator," Journal of the Korean Ceramic Society, Vol. 40, No. 10, 2003, pp. 1005-1014. https://doi.org/10.4191/KCERS.2003.40.10.1005
  8. Lee, H. S. and Jee, N. Y., "An Experimental Study on Strength Properties of Alkali Activated Slag Mortars with Different Activator Type and Curing Temperature," The 60th Anniversary & Annual Conference of AIK, Vol. 25, No. 1, 2005, pp. 349-352.
  9. An, Y. J., Mun, K. J., Soh, S. Y., and Soh, Y. S., "The Properties of Alkali Activated Slag Mortars Using Sodium Silicate with Activator," Proceeding of Annual Conference of the Architectural Institute of Korea Structure & Construction, Vol. 26, No. 1, 2006, pp. 341-344.
  10. Lee, Y. J., Jee, N. Y., and Kim, J. H., "The Experimental Study for Application of Alkali Activated Slag Concrete," Journal of Architectural Institute of Korea, Vol. 23, No.2, 2007, pp. 99-106.
  11. We, J. W., Kim, S. H., Kim, S. H., Ji, S. W., Choi, S. K., and Seo, C. H., "An Experimental Study on Lightweight Aggregate Blast Furnace Slag Concrete by Alkali-Activated Reaction," Journal of Architectural Institute of Korea, Vol. 26, No. 9, 2010, pp. 87-94.
  12. Kang, H. Y., Kang, H. B., and Park, S. S., "Strength Behavior and Microstructure of Alkali-Activated Slag Cement Concrete," Journal of Korea Society of Waste Management, Vol. 27, No. 5, 2010, pp. 405-414.
  13. Collins, F. and Sanjayan, J. G., "Early Age Strength and Workability of Slag Pastes Activated by NaOH and $Na_{2}CO_{3}$," Cement and Concrete Research, Vol. 28, 1998, pp. 655-664. https://doi.org/10.1016/S0008-8846(98)00025-8
  14. Li, Y. and Sun, Y., "Preliminary Study on Combined-Alkali- Slag Paste Materials," Cement and Concrete Research, Vol. 30, 2000, pp. 963-966. https://doi.org/10.1016/S0008-8846(00)00269-6
  15. Collins, F. and Sanjayan, J. G., "Early Age Strength and Workability of Slag Pastes Activated by NaOH and $Na_{2}CO_{3}$," Cement and Concrete Research, Vol. 28, 1998, pp. 655-664. https://doi.org/10.1016/S0008-8846(98)00025-8
  16. Jo, B. W., Park, S. K., and Kwon, B. Y., "Alkali-Activated Coal Ash (Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete," Journal of the Korea Concrete Institute, Vol. 16, No. 6, 2004, pp. 751-757. https://doi.org/10.4334/JKCI.2004.16.6.751
  17. Yang, K. H. and Song, J. K., "The Properties and Applications of Alkali-Activated Concrete with No Cement," Magazine of the Korea Concrete Institute, Vol. 19, No. 2, 2007, pp. 42-48.
  18. Park, S. S., Kang, H. Y., Han, S. H., and Kang, H. B., "Effects of NaOH and $Na_{2}SiO_{3}$.$9H_{2}O$ Addition on Strength Development of Class F Fly Ash-Mortar," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 9, No. 4, 2005, pp. 261-269.
  19. Atis, C. D., Bilim, C., Celik, O., and Karahan, O., "Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar," Construction and Building Materials, Vol. 23, 2009, pp. 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  20. Pacheco-Torgal, F., Castro-Gomes, J., and Jalali, S., "Alkali- Activated Binders: A Review: Part 1. Historical Background, Terminology, Reaction Mechanisms and Hydration Products," Construction and Building Materials, Vol. 22, 2008, pp. 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019
  21. Puertas, F., Fernandez-Jimenez, A., and Blanco-Varela, M. T., "Pore Solution in Alkali-Activated Slag Cement Pastes. Relation to the Composition and Struction of Calcium Silicate Hydrate," Cement and Concrete Research, Vol. 34, 2004, pp. 139-148. https://doi.org/10.1016/S0008-8846(03)00254-0

Cited by

  1. A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products vol.1, pp.1, 2013, https://doi.org/10.14190/JRCR.2013.1.1.058
  2. Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete vol.27, pp.3, 2015, https://doi.org/10.4334/JKCI.2015.27.3.311
  3. on the Properties of Alkali-Activated Slag Cement vol.28, pp.2, 2016, https://doi.org/10.4334/JKCI.2016.28.2.205