DOI QR코드

DOI QR Code

Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model -For the Seolmacheon Catchment-

관측자료와 RHESSys 모형을 이용한 산림유역의 생태수문 적용성 평가 -설마천유역을 대상으로-

  • Shin, Hyung Jin (Integrated Water Management Research Team, K-water Institute, Korea Water Resources Corporation) ;
  • Park, Min Ji (Dept. of Civil and Environmental Engrg., Univ. of Massachusetts Amherst) ;
  • Kim, Seong Joon (Dept. of Civil and Environmental System Engrg., Konkuk Univ.)
  • 신형진 (한국수자원공사 K-water 연구원 수자원연구소) ;
  • 박민지 (메사츄세츠주립대학 토목환경공학과) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • Received : 2012.04.10
  • Accepted : 2012.09.04
  • Published : 2012.12.31

Abstract

This study is to evaluate the RHESSys (Regional Hydro-Ecological Simulation System) simulated streamflow (Q), evapotranspiration (ET), soil moisture (SM), gross primary productivity (GPP) and photosynthetic productivity (PSNnet) with the measured data. The RHESSys is a hydro-ecological model designed to simulate integrated water, carbon, and nutrient cycling and transport over spatially variable terrain. A 8.5 $km^2$ Seolma-cheon catchment located in the northwest of South Korea was adopted. The catchment covers 90.0% forest and the dominant soil is sandy loam. The model was calibrated with 2 years (2007-2008) daily Q at the watershed outlet and MODIS (Moderate Resolution Imaging Spectroradiometer) GPP, PSNnet and 3 year (2007~2009) daily ET data measured at flux tower using the eddy-covariance technique. The coefficient of determination ($R^2$) and the Nash-Sutcliffe model efficiency (ME) for Q were 0.74 and 0.63, and the average $R^2$ for ET and GPP were 0.54 and 0.93 respectively. The model was validated with 1 year (2009) Q and GPP. The $R^2$ and the ME for Q were 0.92 and 0.84, the $R^2$ for GPP were 0.93.

본 연구에서는 RHESSys (Regional Hydro-Ecologic Simulation System) 모형과 관측 자료를 이용하여 유출량, 증발산량, 토양수분량, 총일차생산량과 순광합성량을 평가하고자 한다. 수문생태모형인 RHESSys는물, 탄소 및 질소순환과 지형 공간적 변화에 따른 물질이동을 모의할 수 있다. 대상유역은 설마천 유역(8.5 $km^2$)으로 우리나라 북서쪽에 위치하고 있다. 유역의 90%이상이 산림유역이고, 토양은 대부분 사양토이다. 2007~2009년의 관측 일유출량을 이용하여 유출량을 검 보정하였고, 증발산량은 에디 공분산 방법에 의한 플럭스 타워로부터 관측되었으며 토양수분은 신뢰할 만한 실측자료를 바탕으로 모형의 보정(2007~2008) 및 검증(2009)을 실시하였다. 또한 지구의 탄소순환을 규명할 수 있는 식생의 순광합성량과 총일차생산량에 대한 모형의 검 보정은 Terra 위성의 MODIS (Moderate Resolution Imaging Spectroradiometer) 센서를 이용한 산출물인 순광합성량과 총일차생산량 자료를 바탕으로 모형의 보정(2007) 및 검증(2008)을 실시하였다. 모의 결과 보정기간 동안의 상관계수와 Nash-Sutcliffe 모형 효율은 유출량은 0.74와 0.63이었고, 증발산량과 총일차생산량의 상관계수는 각각 0.54와 0.93이었다. 모형 검정결과 유출량의 상관계수와 Nash-Sutcliffe 모형효율 각각 0.92와 0.84였으며, 총일차 생산량의 상관계수는 0.93이었다.

Keywords

References

  1. Band, L.E., Patterson, P., Nemani, R., and Running, S.W. (1993). "Forest ecosystem processes at the watershed scale : incorporating hillslope." Agric. For. Mechodol. Vol. 63, pp. 93-126. https://doi.org/10.1016/0168-1923(93)90024-C
  2. Baron, J.S., Hartman, M.D., Kittel, T.G.F., Band, L.E. Ojima, D.S., and Lammers, R.B. (1998). "Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte basin." Ecological Applications, Vol. 8, No. 4, pp. 1037-1051. https://doi.org/10.1890/1051-0761(1998)008[1037:EOLCWR]2.0.CO;2
  3. Beven, K., and Kirkby, M. (1979). "A physically-based variable contributing area model of basin hydrology." Hydrol. Sci. Bull., Vol. 24, pp. 43-69. https://doi.org/10.1080/02626667909491834
  4. Cao, M., and Woodward, F.I. (1998). "Net primary and ecosystem production and carbon stocks of terrestrial ecosystem and their response to climate change." Global Change Biology, Vol. 4, pp. 185-198. https://doi.org/10.1046/j.1365-2486.1998.00125.x
  5. Clapp, R., and Hornberger, G. (1978). "Empirical equations for some soil hydraulic properties." Water. Resour. Res., Vol. 14, pp. 601-604. https://doi.org/10.1029/WR014i004p00601
  6. Creed, I.F., Tague, C., Swanson, R., and Rothwell, R.L. (2000). "The potential impacts of harvesting on the hydrologic dynamics of boreal watersheds." Proc. American Geophysical Union 2000 Spring Meeting, Washington, D. C., Amer. Geophys. Union.
  7. Curtis, P.S., and Wang, X. (1998). "A meta-analysis of elevated $CO_2$ effects on woody plant mass, form, and physiology." Oecologia, Vol. 113, No. 3, pp. 299-313. https://doi.org/10.1007/s004420050381
  8. Farquhar, G., and vonCaemmerer, S. (1982). "Modeling photosynthetic response to environmental conditions. Encyclopedia of Plant Physiology." O. Lange et al., Eds., New Series, Vol. 12B, Springer-Verlag, pp. 549-587.
  9. Field, C.B., Randerson, J.T., and Malmstrom, C.M. (1995). "Global net primary production: Combining ecology and remote sensing." Remote Sensing of the Environment, Vol. 281, pp. 237-240.
  10. Fredeen, A.L., Randerson, J.T. Holbrook, N.M., and Field, C.B. (1997). "Elevated atmospheric $CO_2$ increased water availability in a water-limited grassland ecosystem." J. Am. Water Resour. Assoc., Vol. 33, pp. 1033-1039. https://doi.org/10.1111/j.1752-1688.1997.tb04122.x
  11. Heinsch, F.A., Reeves, M., Votava, P., Kang, S., Milesl, C., Zhao, M., Glassy, J., Jolly, W.M., Loehman, R., Bowker, C.F., Kimball, J.S., Nemani, R.R., and Running, S.W. (2003). User's guide, GPP and NPP (MOD 17A2/ A3) products NASA MODIS Land Algorithm, Missoula, MT: The University of Montana.
  12. Huh, S.H. (2008). "Understanding of hydrology, soil moisture for water resources information." Korea Water Resources Corporation, Vol. 46, pp. 58-71. (in Korean)
  13. Hwang, T.H., Kang, S.K., Kim, Y.I., Kim, J., Lee, D.W., and Band, L.E. (2008). "Evaluating Drought effect on MODIS Gross Primary Production(GPP) with an ecohydrological model in the Mountainous Forest. East Asia." Global Change Biology, Vol. 14, No. 5, pp. 1037-1056. https://doi.org/10.1111/j.1365-2486.2008.01556.x
  14. Ito, A., and Oikawa, T. (2000). "A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970 to 1997." Climate Research, Vol. 15, No. 3, pp. 161-183. https://doi.org/10.3354/cr015161
  15. Jarvis, P. (1976). "The interpretations of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos." Trans. Roy. Soc. London, Vol. B273, pp. 593-610.
  16. Joh, H.K., Lee, J.W., Shin, H.J., Park, G.A., and Kim, S.J. (2010). "Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixed Forest in the Seolmacheon Catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 4, pp. 289-297. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.4.289
  17. Jun, J.H., Kim, K.H., Yoo, J.Y., Jeong, Y.H., and Jeong, C.G. (2005). "Interactions and changes between sapflow flux, soil water tension, and soil moisture content at the artificial forest of Abies holophylla in Gwangneung, Gyenggido." Journal of Korean Forest Society, Vol. 94, No. 6, pp. 496-503. (in Korean with English abstract)
  18. Kelliher, F.M., Leuning, R., Raupach, M.R., and Schulze, E.D. (1995). "Maximum conductances for evaporation from global vegetation types." Agric. for Meteorol., Vol. 73, pp. 1-16. https://doi.org/10.1016/0168-1923(94)02178-M
  19. Knapp, A.K., Hamerlynck, E.P., Ham, J.H., and Owensby, C.E. (1996). "Responses in stomatal conductance to elevated $CO_2$ in 12 grassland species that differ in growth form." Vegetatio, Vol. 125, pp. 31-41. https://doi.org/10.1007/BF00045202
  20. Korea institute of construction technology (2008). Development od watershed Assessment Techniques for Healthy Water Cycle. Summary report, Korea institute of construction technology, 2008-039, pp. 97-101. (in Korean)
  21. Kwon, H.J., Lee, H., Lee, Y.K., Lee, J.W., Jung, S.W., and Kim, J. (2009). "Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 1, pp. 39-47. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.1.039
  22. Korner, C. (1995). "Leaf diffusive conductances in the major vegetation types of the globe." Ecophysiology of Photosynthesis, edited by E.D. Schulze, and M.M. Caldwell, Springer-Verlag, New York, pp. 463-490.
  23. Lee, D.W., Kim, E.S., Lee, H.J., and Seo, B.S. (2009). Utilizing of the eco-hydrological model (RHESSys): analysis of the impact of land cover, Sustainable Water Resources Research Center, pp. 3-15. (in Korean)
  24. Lee, J.H., Kang, S.K., Jang, K.C., Ko, J.H., and Hong, S.Y. (2011). "The Evaluation of Meteorological Inputs retrieved from MODIS for Estimation of Gross Primary Productivity in the US Corn Belt Region" Korean Journal of Remote Sensing, Vol. 27, No. 4, pp. 481-494. https://doi.org/10.7780/kjrs.2011.27.4.481
  25. Ludeke, M., Badeck, F., and Otto, R. (1994). "The Frankfurt Biosphere Model: a global process oriented model of seasonal and long-term $CO_2$ exchange between terrestrial ecosystems and the atmosphere. I. Model description and illustrative results for cold deciduous and boreal forests." Climate Research, Vol. 4, pp. 143-166. https://doi.org/10.3354/cr004143
  26. Lutze, J.L., and Gifford, R.M. (1998). "Carbon accumulation, distribution and water use of Danthonia richardsonii swards in response to $CO_2$ and nitrogen supply over four years of growth." Global Change Biology, Vol. 4, pp. 851-861. https://doi.org/10.1046/j.1365-2486.1998.00200.x
  27. Mackay, D., and Band, L. (1997). "Forest ecosystem processes at the watershed scale: Dynamic coupling of distributed hydrology and canopy growth." Hydrol. Proc., Vol. 11, pp. 1197-1217. https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1197::AID-HYP552>3.0.CO;2-W
  28. Mitchell, S.W., and Csillag, F. (2000). Does pattern matter? Handling bias, uncertainty, and stability of predicted vegetation growth in Grasslands National Park, Saskatchewan. Proc. Fourth Int. Conf. on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects and Research Needs, Banff, Canada.
  29. Monteith, J.L. (1965). "Evaporation and Environment. 19th Symposia of the Society for Experimental." Biology, Vol. 19, pp. 205-234.
  30. Monteith, J.L. (1972). "Solar radiation and productivity in tropical ecosystems." Journal of Applied Ecology, Vol. 9, pp. 747-766. https://doi.org/10.2307/2401901
  31. Monteith, J.L. (1977). "Climate and the efficiency of crop production in Britain." Philosophical Transactions of the Royal Society of London, Vol. 281, No. 980, pp. 277-294. https://doi.org/10.1098/rstb.1977.0140
  32. Morgan, J.A., LeCain, D.R., Read, JJ., Hunt, H.W., and Knight, W.G. (1998). "Photosynthetic pathway and ontogeny affect water relations and the impact of $CO_2$ on Bouteloua gracilis (C4) and Pascopyrum smithii (C3)." Oecologia, Vol. 114, pp. 483-493. https://doi.org/10.1007/s004420050472
  33. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models, Part I-A discussion of principles." Journal of Hydrology, Vol. 10, pp. 283-290.
  34. Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., and Running, S.W. (2003). "Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999." Science, Vol. 300, pp. 1560-1563. https://doi.org/10.1126/science.1082750
  35. Nobel, P.S. (1991). "Physiochemical and Environmental Plant Physiology." Academic Press, San Diego, pp. 635.
  36. Park, J.S., Kim, K.T., Lee, J.H., and Lee, K.S. (2006). "Applicability of Multi-Temporal MODIS Images for Drought Assessment in South Korea." The Korean Association of Geographic Information Studies, Vol. 9, No. 4, pp. 176-192. (in Korean with English abstract)
  37. Parton, W., Mosier, A., Ojima, D., Valentine, D., Schimel, D., Weier, K., and Kulmala, A. (1996). "Generalized model for $N_2$ and $N_2O$ production from nitrification and denitrification." Global Biogeochem. Cycles, Vol. 10, pp. 401-412. https://doi.org/10.1029/96GB01455
  38. Prince, S., and Goward, S. (1995). "Global primary production: a remote sensing approach." Journal of Biogeography, Vol. 22, No. 4/5, pp. 815-835. https://doi.org/10.2307/2845983
  39. Pritchard, S.G., Rogers, H.H., Prior, S.A., and Peterson, C.M. (1999). "Elevated $CO_2$ and plant structure: a review." Global Change Biology, Vol. 5, No. 7, pp. 807-837. https://doi.org/10.1046/j.1365-2486.1999.00268.x
  40. Running, S., and Coughlan, J. (1988). "A general model of forest ecosystem processes regional applications, Hydrologic balance, canopy gas exchange and photosynthesis." Canadian Jornal of Forest Research, Vol. 17, pp. 472-428.
  41. Running, S., Nemani, R., and Hungerfored, R. (1987). "Extrapolation of synoptic meterological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis." Can. J. For. Res., Vol. 17, pp. 472-483. https://doi.org/10.1139/x87-081
  42. Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M., and Hashimoto, H. (2004). "A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production." BioScience, Vol. 54, No. 6, pp. 547-560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
  43. Running, S.W., Thornton, P.E., Nemani, R.R., and Glassy, J. (2000). "Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System." Methods in Ecosystem Science, Springer-Verlag, N, pp. 44-57.
  44. Schulze, E.D., Kelliher, F.M., Korner, C., Lloyd, J., and Leuning, R. (1994). "Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate and plant nitrogen nutrition: A global ecology scaling exercise." Annu. Rev. Ecol. Syst., Vol. 25, pp. 629-660. https://doi.org/10.1146/annurev.es.25.110194.003213
  45. Sellers, P.J., Hall, F.G., Asrar, G., Strebel, D.E., and Murphy, R.E. (1992). "An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE)." J. Geophys. Res. Vol. 97, No. D17, pp. 18,345-18,371. https://doi.org/10.1029/92JD02111
  46. Shin, H.J., Ha, R., Park, M.J., and Kim, S.J. (2010). "Estimation of Spatial Evapotranspiration using the Relationship between MODIS NDVI and Morton ET -For ChungjudamWatershed-." Journal of the Korean Society of Agricultural Engineers, Vol. 52, No. 1, pp. 19-24. (in Korean with English abstract) https://doi.org/10.5389/KSAE.2010.52.1.019
  47. Tague, C.L., and Band, L.E. (2001). "Simulating the impact of road construction and forest harvesting on hydrologic response using rhessys." Earth Surface Processes Landforms, Vol. 26, pp. 135-151. https://doi.org/10.1002/1096-9837(200102)26:2<135::AID-ESP167>3.0.CO;2-J
  48. Tague, C.L., and Band, L.E. (2004). "RHESSys: Regional Hydro-Ecologic Simulation System-An object oriented approach to spatially distributed modeling of Carbon, Water, and Nutrient cycling." Earth Interactions, Vol. 8, pp. 1-42.
  49. Turner, D.P., Urbanski, S., Bremer, D., Wofsy, S.C., Meyers, T., Gower, S.T., and Gregory, M. (2003). "A cross-biome comparison of daily light-use efficiency for gross primary production." Global Change Biology, Vol. 9, pp. 383-395. https://doi.org/10.1046/j.1365-2486.2003.00573.x
  50. Vertessy, R.A., Hatton, T.J., Benyon, R.J., and Dawes, W.R. (1996). "Long term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clearfelling and regeneration." Tree Physiol., Vol. 16, pp. 221-232. https://doi.org/10.1093/treephys/16.1-2.221
  51. Volk, M., Niklaus, P.A., and Korner, C. (2000). "Soil moisture effects determine $CO_2$ responses of grassland species." Oecologia, Vol. 125, pp. 380-388. https://doi.org/10.1007/s004420000454
  52. Watson, F.G.R., Pierce, L.L., Mulitsch, M., Newman, W., Nelson, J., and Rocha, A. (1999). "Spatial modelling of the impacts of 150 years of land use change on the carbon, nitrogen, and water budgets of a large watershed." ESA Annual Meeting, 8th-12th Aug. 1999, Spokane, USA
  53. White, M.A., Thornton, P.E., Running, S.W., and Nemani, R.R. (2000). "Parameterization and Sensitivity Analysis of the BIOME-BGC Terrestrial Ecosystem Model: Net Primary Production Controls." Earth Interactions, Vol. 4, No. 3, pp. 1-85. https://doi.org/10.1175/1087-3562(2000)004<0001:ITEASI>2.3.CO;2
  54. Yoon, Y.N. (2005). Hydrology-basis and practice-. Chungmoongak Publishers, pp. 135-184. (in Korean)
  55. Zierl, B., Bugman, H., and Tague, C.L. (2006). "Water and carbon fluxes of European ecosystem: an evaluation of the ecohydrological model RHESSys." Hydrological Processes, Vol. 214, No. 24, pp. 3328-3339. http://kict.datapcs.co.kr/

Cited by

  1. Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.569
  2. Comparison of the Penman‐Monteith method and regional calibration of the Hargreaves equation for actual evapotranspiration using SWAT-simulated results in the Seolma-cheon basin, South Korea vol.61, pp.4, 2016, https://doi.org/10.1080/02626667.2014.943231
  3. Development of Distributed Ecohydrologic Model and Its Application to the Naeseong Creek Basin vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1053
  4. Large Scale SWAT Watershed Modeling Considering Multi-purpose Dams and Multi-function Weirs Operation - For Namhan River Basin - vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.021
  5. Evaluation of the effects of climate change on forest watershed hydroecology using the RHESSys model: Seolmacheon catchment pp.1611-2504, 2019, https://doi.org/10.1007/s10333-018-00683-1