DOI QR코드

DOI QR Code

Laboratory Experiments of Stem Waves along a Vertical Structure under Overtopping Conditions

월파조건에서 직립구조물을 따른 연파실험

  • Lee, Jong-In (Dept. of Marine and Civil Engineering, Chonnam National University) ;
  • Kim, Young-Taek (River and Coastal Research Division, Korea Institute of Construction Technology)
  • 이종인 (전남대학교 공학대학 해양토목공학과) ;
  • 김영택 (한국건설기술연구원 하천해안연구실)
  • Received : 2012.08.13
  • Accepted : 2012.08.31
  • Published : 2012.12.31

Abstract

This study investigates the characteristics of stem waves along a vertical structure under overtopping conditions through laboratory experiments in a wave basin. The uni-directional random waves with Bretschneider-Mitsuyasu frequency spectrum as incident waves were used. This study is focused on the reduction of wave height due to the variation of relative freeboard height (R) and the results for wave overtopping conditions are compared with those for non-overtopping conditions. Though the relative wave height along a vertical structure decreases with the decrease of relative freeboard, the variation of stem width is not significant. For the relative freeboard is greater than 1, the reduction effect of stem wave height by overtopping can be ignored in this experiments. The reduction effect of wave height along the structure for R =0.5 is about 10% comparing with R =1.5.

본 연구에서는 월파조건에서 직립구조물을 따른 연파특성을 평면수조에서 수리실험을 통해 검토하였으며, 실험에 사용된 파랑은 Bretschneider-Mitsuyasu 주파수 스펙트럼을 가지는 일방향 불규칙파이다. 주된 내용은 상대여유고(R)의 변화에 따른 파고저감을 검토하는 것이며, 월파조건과 비월파조건에서의 파고계측 실험결과를 비교하였다. 상대여유고가 작아질수록 월파의 증대로 인해 상대유의파고는 감소하였으나, 연파 폭의 변화는 거의 나타나지 않았다. 그리고 본 실험조건내에서 상대여유고가 1보다 큰 경우는 월파에 의한 파고저감효과가 거의 없는 것으로 나타났으며, R =0.5인 경우는 R =1.5인 경우에 비해 구조물 전면의 파고가 약 10% 저감되는 것으로 나타났다.

Keywords

References

  1. Berger, V., and Kohlhase, S. (1976). "Mach-reflection as a diffraction problem." Proc. 15th Conf. Coastal Eng., ASCE, Vol. 1, pp. 796-814.
  2. Kim, Y.T., and Lee, J.I. (2012). "Wave overtopping formula for vertical structure including effects of wave period: non-breaking conditions." J. of Korean Society of Coastal and Ocean Engineers, KSCOE, Vol. 24, No. 3, pp. 228-234. https://doi.org/10.9765/KSCOE.2012.24.3.228
  3. Lee, J.-I., and Yoon, S.B. (2006). "Hydraulic and numerical experiments of stem waves along a vertical wall." J. of Korean Society of Civil Engineers, KSCE, Vol. 26, No. 4B, pp. 405-412.
  4. Lee, J.-I., Choi, J.W., and Yoon, S.B. (2008). "Hydraulic experiments of stem waves along a vertical wall due to unidirectional random waves." J. of Korean Society of Coastal and Ocean Engineers, KSCOE, Vol. 20, No. 1, pp. 49-61.
  5. Liu, P.L-F., and Yoon, S.B. (1986). "Stem waves along depth discontinuity." J. Geophy. Res., Vol. 91, No. C3, pp. 3979-3982. https://doi.org/10.1029/JC091iC03p03979
  6. Mase, H., Memita, T., Yuhi, M., and Kitano, T. (2002). "Stem waves along vertical wall due to random wave incidence." Coastal Engineering, Vol. 44, pp. 339-350. https://doi.org/10.1016/S0378-3839(01)00038-2
  7. Melville, W.K. (1980). "On the Mach reflection of solitary wave." J. of Fluid Mech., Vol. 98, pp. 258-297.
  8. Perroud, P.H. (1957). "Solitary wave reflection along a straight vertical wall at oblique incidence." Univ. of California-Berkely IRE Technical Report 99-3.
  9. Yoo, H.S., Kim, K.H., and Jung, E.J. (2010). "Hydraulic experiments of stem waves due to multi-directional random waves along a vertical caisson." J. of Korean Society of Coastal and Ocean Engineers, KSCOE, Vol. 22, No. 6, pp. 429-436.
  10. Yoon, S.B., and Liu, P.L.-F. (1989). "Stem waves along breakwater." J. of Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 111, No. 5, pp. 635-648.
  11. Yue, D.K.P., and Mei, C.C. (1980). "Forward diffraction of Stokes waves by a thin wedge." J. of Fluid Mech., Vol. 99, pp. 33-52. https://doi.org/10.1017/S0022112080000481