• Title/Summary/Keyword: 순광합성량

Search Result 10, Processing Time 0.027 seconds

Evaluation of Watershed Hydrology Using Ecohydrological Model (생태수문모델을 이용한 유역수문 평가)

  • Shin, Hyung-Jin;Park, Min-Ji;Park, Geun-Ae;Joh, Hyung-Kyung;Ha, Rim;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.127-127
    • /
    • 2011
  • 본 연구에서는 RHESSys (Regional Hydro-Ecologic Simulation System) 모형을 이용하여 산림 유역의 생태수문학적 거동을 평가하고자 한다. 설마천 유역($8.48\;km^2$)을 대상으로 2007~2009년의 관측 일유출량을 이용하여 유출량을 검 보정하였고, 증발산량 및 토양수분은 신뢰할 만한 실측자료를 바탕으로 모형의 보정(2007-2008)및 검증(2009)을 실시하였다. 또한 지구의 탄소순환을 규명할 수 있는 식생의 순광합성량과 총일차생산량에 대한 모형의 검 보정은 Terra 위성의 MODIS (Moderate Resolution Imaging Spectroradiometer) 센서를 이용한 산출물인 순광합성량과 총일차생산량 자료를 바탕으로 모형의 보정(2007)및 검증(2008)을 실시하였다. 모형의 최적의 수문, 생리생태학, 토양의 매개변수를 선정하여 검증한 결과, 유출량에 대한 Nash-Sutcliffe 모형효율은 0.84, 증발산, 토양수분, 총일차생산량, 순광합성량의 결정계수는 0.49, 0.18, 0.38, 0.93 이었다.

  • PDF

Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model -For the Seolmacheon Catchment- (관측자료와 RHESSys 모형을 이용한 산림유역의 생태수문 적용성 평가 -설마천유역을 대상으로-)

  • Shin, Hyung Jin;Park, Min Ji;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1293-1307
    • /
    • 2012
  • This study is to evaluate the RHESSys (Regional Hydro-Ecological Simulation System) simulated streamflow (Q), evapotranspiration (ET), soil moisture (SM), gross primary productivity (GPP) and photosynthetic productivity (PSNnet) with the measured data. The RHESSys is a hydro-ecological model designed to simulate integrated water, carbon, and nutrient cycling and transport over spatially variable terrain. A 8.5 $km^2$ Seolma-cheon catchment located in the northwest of South Korea was adopted. The catchment covers 90.0% forest and the dominant soil is sandy loam. The model was calibrated with 2 years (2007-2008) daily Q at the watershed outlet and MODIS (Moderate Resolution Imaging Spectroradiometer) GPP, PSNnet and 3 year (2007~2009) daily ET data measured at flux tower using the eddy-covariance technique. The coefficient of determination ($R^2$) and the Nash-Sutcliffe model efficiency (ME) for Q were 0.74 and 0.63, and the average $R^2$ for ET and GPP were 0.54 and 0.93 respectively. The model was validated with 1 year (2009) Q and GPP. The $R^2$ and the ME for Q were 0.92 and 0.84, the $R^2$ for GPP were 0.93.

대기의 오존에 의한 스트로브 잔나무 잎의 가스교환과 아스코르브산, 글루타치온의 농도 변화

  • 이웅상
    • The Korean Journal of Ecology
    • /
    • v.16 no.4
    • /
    • pp.397-408
    • /
    • 1993
  • Gas exchange rates and concentrations of ascorbate and glutathlone were measured in needles of eastern white pine(Pinus strohltr) trees differing in foliar sensitivity to ambient oxidant pollution during a ten month period beginning in mid-June, 1988. Current-year needle dry mass and length was 60 to 75% and 45 to 60% less, respectively, in sens~tive trees than in a tolerant tree. Net photosynthesis ($P_n$) and needle conductance ($g_n$) were greatest in the tolerant individual through late September when the rates begin to decline In trees. Needle transpiration rates showed a trend similar to $P_n$ and $g_n$. Ascorbate and total glutathione concentrations in current-year needles increased through the summer and fall, reached a maximum in mid-winter, and then decreased in the spring. Consistently throughout the year, ascorbate concentration was highest in the tolerant tree until the initial springtime decline began in April. The difference In needle ascorbate between the tolerant and sensitive individuals was greater in the summer months (25 to 30%) than in the winter months (8 to 19%). Glutathione content was similar, as was the ratio or oxidized /reduced glutathione, in both tolerant and sensitive trees.

  • PDF

Sensitivity of Five Clones of Populus alba × P. glandulosa Cuttings to Ozone Exposure in Open-Top Chambers in Relation to Their Growth Rates (Open-Top chamber 내(內)에서 오존에 노출(露出)시킨 현사시 5개(個) 클론의 생장량(生長量)과 오존에 대(對)한 민감성(敏感性)과의 관계(關係))

  • Kim, Tae Kyu;Lee, Kyung Joon;Kim, Goon Bo;Koo, Yong Bon
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.105-115
    • /
    • 2000
  • This study was conducted to test a hypothesis that sensitivity of trees to ozone exposure was related to their growth rates. Two cultivars of Populus alba ${\times}$ P. glandulosa with different genetic growth potential were used for the comparison. Two clones(72-30, 72-16) of cultivar No. 4 with fast growing potential and three clones(71-28, 72-27, 72-19) of cultivar No. 2 with slow growing potential were propagated in early spring by cutting in $2-{\ell}$ plastic pots. They were grown outdoor for 5 months and exposed in late August for 30 days to 70 and 130ppb ozone in a open-top chambers(2.5m in diameter and 2m in height). Ozone concentration in a control chamber was maintained below 30ppb by filtering with activated charcoal. Each treatment was replicated twenty times. In a control chamber, cultivar No. 4 grew 73%, 64%, and 38% faster than cultivar No. 2 in leaf weight, root weight, and total dry weight, respectively. Visible injury was observed only in cultivar No. 4 in 130ppb treatment. Ozone treatment at both 70 and 130ppb decreased height growth, dry weight of leaf, root, and entire plants in all five clones. Particularly root growth was reduced by 39.7% and 13.8% in cultivar No. 4 and No. 2, respectively, in 70ppb treatment. Consequently, shoot/root ratio of cultivar No.4 was increased by 63.4%, while that of cultivar No.2 was increased by 22.1%. Stomatal conductance decreased more in cultivar No.4 than in cultivar No.2. Net photosynthesis of cultivar No.4 at 130ppb ozone decreased by 69.5%, while that of cultivar No.2 decreased by 31.5%. Above mentioned physiological responses of two cultivars to ozone strongly suggested that fast growing cultivar No.4 was more sensitive to ozone than slow growing cultivar No.2. It was concluded that sensitivity of trees to ozone exposure was closely related to their growth rates.

  • PDF

Physiological, Biochemical, and Adsorption Characteristics of Abies holophylla, Acer buergerianum, Pinus densiflora, and Quercus variabilis under Elevated Particulate Matter (미세먼지 처리에 따른 전나무, 중국단풍, 소나무, 굴참나무의 생리⋅생화학적 반응 및 흡착 특성)

  • Sang-heon Woo;Koeun Lee;Jongkyu Lee;Myeong Ja Kwak;Yea Ji Lim;Su Gyeong Jeong;Sun Mi Je;Hanna Chang;Jounga Son;Chang-Young Oh;Kyongha Kim;Su Young Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.57-70
    • /
    • 2023
  • In recent years, the frequency of warnings about particulate matter (PM) has gradually increased in Korea, along with an increase in its intensity. Because of their vast surface area, reactivity to external particles, and characteristics of their leaves, urban trees can act as biofilters, reducing PM pollution. However, the air pollutant PM can cause various types of damage not only to human health but also to vegetation. Studies performed to date on the responses of trees to PM are still insufficient. Here, we analyzed the correlation between PM adsorption and physiological and biochemical responses of four major street tree species, namely, Abies holophylla, Acer buergerianum, Pinus densiflora, and Quercus variabilis, under conditions of approximately 300 ㎍ m-3 of fly ash emissions using a phytotron. The results showed that the physiological and biochemical responses and PM adsorption differed depending on the tree species. In correlation analysis, it was confirmed that there were positive correlations between physiological factors, and PM adsorption on adaxial leaf surfaces negatively impacted the physiological characteristics. This study provides fundamental information for selecting tree species to reduce PM pollution and develop sustainable urban forests.

Effect of SCB Liquid Manure Application in Pear Orchard Managed by Cover Crop System on Tree Growth, Potential Nutrient Recovery and Soil Physicochemical Properties (녹비작물 재배 시 SCB 액비 혼용이 배나무 생육 및 양분 환원 가능량, 토양 물리화학성에 미치는 영향)

  • Lee, Seong-Eun;Park, Jin-Myeon;Choi, Dong-Geun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.779-786
    • /
    • 2012
  • Many farmers have been seeking alternatives to chemical fertilizer for successful organic fruit production. This experiment was carried out to investigate the replaceability of chemical fertilizer by cover crop and slurry composting biofiltration (SCB) liquid manure (LM) application in pear orchard. Three treatments were contained in this experiment; cover crop only and cover crop + LM treatment, and control (chemical fertilizer application). Dry weight and mineral contents of gramineous cover crops were significantly increased in LM-combined treatments than that of leguminous species. Bulk density of soil was decreased in rye + LM and hairy vetch + LM treatments, compared with each cover crop treatment. Soil pH was lowest in fertilizer treatment and soil nitrate content became similar between treatments after rainy season. Available soil phosphate was lower in cover crop and cover crop + LM treatmemts than control, but exchangeable Mg was higher. The mineral content and net assimilation rate of leaves showed no difference between the treatments. As a result, it is suggested that the application of SCB liquid manure in pear orchard managed by cover crops is desirable to maintain the productivity by improving soil physical properties and potential nutrient recovery.

Effect of Light Transmittance Control on the Growth Status of Aerial Parts during the Growing Season of Panax ginseng (생육시기별 광량조절이 인삼의 지상부 생육에 미치는 영향)

  • Cheon, Seong-Ki;Lee, Tae-Su;Yoon, Jong-Hyuk;Lee, Sung-Sik
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.202-206
    • /
    • 2003
  • This study was conducted to compare the growth status of aerial parts, photosynthesis and microclimate between fixing light transmittance (Control) and changing light transmittance (C.L.T.) during ginseng growing seasons. Control showed 8% light transmittance rate during growing seasons. But C.L.T. showed 18% light transmittance rate during early (April-June) and late growth stage (September-October) and 6% light transmittance rate middle growth stage(July-August). Air temperature, leaking water rate and soil water content of C.L.T. was higher than those of control during early and late growth stage. But Air temperature, leaking water rate and soil water content of C.L.T was lower than those of control during middle growth stage C.L.T. exhibited superiority in survival ratio, stem diameter, stem length, L.A.I. and stem angle compared to control. Chlorophyll content of C.L.T. was lower than that of control but S.L.W., stomatal opening and photosynthetic rates of C.L.T. was higher than those of control. Also Alternaria blight disease and defoliation of C.L.T. was lower than those of control.

Photosynthesis, Antioxidant Enzyme, and Anatomical Difference of Sedum kamtschaticum and Hosta longipes to Ozone (오존이 기린초와 비비추의 광합성, 항산화효소, 해부학적 구조에 미치는 영향)

  • Cheng, Hyo-Cheng;Woo, Su-Young;Lee, Seong-Han;Baek, Saeng-Geul
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.394-402
    • /
    • 2010
  • The objective of this study was to identify the effects of ozone on the two species in controlled environment. $Sedum$ $kamtschaticum$ and $Hosta$ $longipes$ were exposed in both control and ozone chamber to investigate photosynthesis, antioxidant enzyme activity, visible damage, the number and the size of stomata and the plastogloubuli. Ozone was fumigated in the concentration of $200{\mu}g{\cdot}kg^{-1}$ for 8 hours in a day (from 08:00 AM to 04:00 PM). Firstly, net photosynthesis of two species was decreased after ozone fumigation. Secondly, glutathione reductase activities showed significant difference between control and ozone treatment. Thirdly, visible symptoms of leaves were expressed such as chlorosis, necrosis and decoloration. Also, the size of stoma was significantly decreased in ozone-exposed plants. Furthermore, the intercellular space of $Hosta$ $longipes$ showed increased phenomenon because the mesophyll was collapsed. The number and the size of the plastogloubuli were significantly larger in ozone stress.

The Photoautotrophic Culture System Promotes Photosynthesis and Growth of Somatic Embryo-derived Plantlets of Kalopanax septemlobus (독립영양방식 액체대량배양 시스템하에서 배양한 체세포배 유래 음나무 기내묘의 생장과 광합성)

  • Park, So-Young;Moon, Heung-Kyu;Kim, Yong-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.212-217
    • /
    • 2011
  • A photoautotrophic micropropagation methodology in liquid culture medium has a number of advantages for large-scale propagation of plants. This paper describes an improved system for the mass propagation via somatic embryogenesis of the medicinal plant Kalopanax septemlobus Nakai. Somatic embryo-derived young plantlets of K. septemlobus were cultured either under heterotrophic conditions with sucrose on half-strength MS medium with $30gL^{-1}$ sucrose, under heterotrophic conditions without sucrose, or under photoautotrophic conditions (MS liquid medium without sucrose under forced aeration) for four weeks before transferring the plantlets for acclimatization. Plantlets grown under photoautotrophic conditions had more leaves, higher chlorophyll content, a higher net photosynthetic rate (NPR), and a higher survival rate. The results indicate that the photoautotrophic conditions with a forced ventilation system are effective in enhancing the growth of plantlets and the rate of net photosynthesis. The plantlets grown under photoautotrophic conditions had a high survival rate (92%) upon ex vitro transplantation. Our study shows that autotrophically produced plantlets acclimatize better and sooner upon ex vitro transplantation than conventionally cultured plants.

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.