DOI QR코드

DOI QR Code

Survival of Microorganisms on Antimicrobial Filters and the Removal Efficiency of Bioaerosols in an Environmental Chamber

  • Kim, Sung Yeon (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Kim, Misoon (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Lee, Sunghee (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Lee, JungEun (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Ko, GwangPyo (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University)
  • Received : 2012.02.27
  • Accepted : 2012.05.16
  • Published : 2012.09.28

Abstract

Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) $SiO_2$, ZnO, and $Al_2O_3$, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of $25^{\circ}C$ and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.

Keywords

References

  1. Adams, L., D. Lyon, and P. Alvarez. 2006. Comparative ecotoxicity of nanoscale $TiO_2$, $SiO_2$, and ZnO water suspensions. Water Res. 40: 3527-3532. https://doi.org/10.1016/j.watres.2006.08.004
  2. Atzori, C., A. Bruno, G. Chichino, E. Bombardelli, M. Scaglia, and M. Ghione. 1993. Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii. Antimicrob. Agents Chem. 37: 1492-1496. https://doi.org/10.1128/AAC.37.7.1492
  3. Ba1azy, A., M. Toivola, A. Adhikari, S. K. Sivasubramani, T. Reponen, and S. A. Grinshpun. 2006. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am. J. Infect. Control 34: 51-57. https://doi.org/10.1016/j.ajic.2005.08.018
  4. Bomo, A. M., T. K., Stevik, I. Hovi, and J. Hanssen. 2004. Bacterial removal and protozoan grazing in biological sand filters. J. Environ. Qual. 33: 1041-1047. https://doi.org/10.2134/jeq2004.1041
  5. Boonkaew, T. and N. Camper. 2005. Biological activities of Ginkgo extracts. Phytomedicine 12: 318-323. https://doi.org/10.1016/j.phymed.2003.06.008
  6. Cecchini, C., M. C. Verdenelli, C. Orpianesi, G. M. Dadea, and A. Cresci. 2004. Effect of antimicrobial treatment on fibreglassacrylic filters. J. Appl. Microbiol. 97: 371-377. https://doi.org/10.1111/j.1365-2672.2004.02308.x
  7. Cushnie, T. and A. Lamb. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  8. Davidson, C., C. F. Green, A. L. Panlilio, P. A. Jensen, B. H., Stover, G. Roselle, et al. 2011. Method for evaluating the relative efficiency of selected N95 respirators and surgical masks to prevent the inhalation of airborne vegetative cells by healthcare personnel. Indoor Built Environ. 20: 265-277. https://doi.org/10.1177/1420326X10378805
  9. Decker, H. M., L. M. Buchanan, L. B. Hall, and K. R. Goddard. 1963. Air filtration of microbial particles. Am. J. Public Health. 53: 1982-1988. https://doi.org/10.2105/AJPH.53.12.1982
  10. Elahifard, M., S. Rahimnejad, S. Haghighi, and M. Gholami. 2007. Apatite-coated Ag/AgBr/$TiO_2$ visible-light photocatalyst for destruction of bacteria. J. Am. Chem. Soc. 129: 9552-9553. https://doi.org/10.1021/ja072492m
  11. Eninger, R. M., A. Adhikari, and T. Reponen. 2008. Differentiating between physical and viable penetrations when challenging respirator filters with bioaerosols. Clean 36: 615-621.
  12. EPA. 2001. Method 1601: Male-specific (F+) and Somatic Coliphage in Water by Two-step Enrichment Procedure.
  13. Feng, Q., J. Wu, G. Chen, F. Cui, T. Kim, and J. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  14. Gardner, D. and G. Shama. 1998. The kinetics of Bacillus subtilis spore inactivation on filter paper by UV light and UV light in combination with hydrogen peroxide. J. Appl. Microbiol. 84: 633-641. https://doi.org/10.1046/j.1365-2672.1998.00391.x
  15. Green, C. and P. Scarpino. 2002. The use of ultraviolet germicidal irradiation (UVGI) in disinfection of airborne bacteria. Environ. Eng. Policy 3: 101-107. https://doi.org/10.1007/s100220100046
  16. Griffiths, W. B., A. Bennette, S. Speight, and S. Parks. 2005. Determining the performance of a commercial air purification system for reducing airborne contamination using model microorganisms: A new test methodology. J. Host Infect. 61: 242-247. https://doi.org/10.1016/j.jhin.2005.03.004
  17. Hasegawa, N., S. Yamasaki, and Y. Horiguchi. 2011. A study of bacterial culturability during bioaerosol challenge test using a test chamber. J. Aerosol Sci. 42: 397-407. https://doi.org/10.1016/j.jaerosci.2011.02.009
  18. Hughey, P. G., P. C. Roberts, L. J. Holsinger, S. L. Zebedee, R. A. Lamb, and R. W. Compans. 1995. Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212: 411-421. https://doi.org/10.1006/viro.1995.1498
  19. Kawahara, K., K. Tsuruda, M. Morishita, and M. Uchida. 2000. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 16: 452-455. https://doi.org/10.1016/S0109-5641(00)00050-6
  20. Kim, H. Y., H. J. Park, and G. Ko. 2009. Hollow-fiber ultrafiltration for the concentration and simultaneous recovery of multiple pathogens in contaminated foods. J. Food Protect. 72: 2547-2552. https://doi.org/10.4315/0362-028X-72.12.2547
  21. Kemp, S., T. Kuehn, D. Pui, D. Vesley, and A. Streifel. 1995. Filter collection efficiency and growth of microorganisms on filters loaded with outdoor air. ASHRAE Trans. 101: 228-238.
  22. Ko, G., M. W. First, and A. H. Burge. 2002. The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Environ. Health Perspect. 110: 95-101. https://doi.org/10.1289/ehp.02110s195
  23. Kushev, D., G. Gorneva, V. Enchev, E. Naydenova, J. Popovac, S. Taxirova, et al. 2002. Synthesis, cytotoxicity, antibacterial and antitumor activity of platinum(II) complexes of 3-aminocyclohexanespiro-5-hydantoin. J. Inorg. Biochem. 89: 203-211. https://doi.org/10.1016/S0162-0134(01)00420-2
  24. Mainelis, G., A. Adhikari, K. Willeke, S. A. Lee, T. Reponen, and S. A. Grinshpun. 2002. Collection of airborne microorganisms by a new electrostatic precipitator. J. Aerosol Sci. 33: 1417-1432. https://doi.org/10.1016/S0021-8502(02)00091-5
  25. Matsumura, Y., K. Yoshikata, S. Kunisaki, and T. Tsuchido. 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69: 4278-4281. https://doi.org/10.1128/AEM.69.7.4278-4281.2003
  26. Mentese, S., A. Y. Rad, M. Arysoy, and G. Gullu. 2011. Seasonal and spatial variations of bioaerosols in indoor urban environments, Ankara, Turkey. Indoor Built Environ. 19: 1-14.
  27. Miaskiewicz-Peska, E. 2011. Effect of antimicrobial air filter treatment on bacterial survival. Fibres Text. East Eur. 19: 73-77.
  28. Mocho, V. M. and F. X. Ouf. 2011. Clogging of industrial pleated high efficiency particulate air (HEPA) filters in the event of fire. Nucl. Eng. Des. 241: 1785-1794. https://doi.org/10.1016/j.nucengdes.2011.01.036
  29. Monteiro, S., J. Clemente, A. Henriques, R. Gomes, M. Carrondo, and A. Cunha. 2005. A procedure for high-yield spore production by Bacillus subtilis. Biotechnol. Progr. 21: 1026-1031.
  30. Nasar-Abbas, S. and A. Halkman. 2004. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int. J. Food Microbiol. 97: 63-69. https://doi.org/10.1016/j.ijfoodmicro.2004.04.009
  31. Nicholson, W. L., A. C. Schuerger, and P. Setlow. 2005. The solar UV environment and bacterial spore UV resistance: Considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mut. Res. 571: 249-264. https://doi.org/10.1016/j.mrfmmm.2004.10.012
  32. Rayne, S. and G. Mazza. 2007. Biological activities of extracts from sumac (Rhus spp.): A review. Plant Food Hum. Nutr. 62: 165-175. https://doi.org/10.1007/s11130-007-0058-4
  33. Rengasamy, A., Z. Zhuang, and R. Berryann. 2004. Respiratory protection against bioaerosols: Literature review and research needs. Am. J. Infect. Control 32: 345-354. https://doi.org/10.1016/j.ajic.2004.04.199
  34. Ribeiro, C., S. Burge, S. Palmer, J. O. H. Tobin, and I. Watkins. 1987. Legionella pneumophila in a hospital water system following a nosocomial outbreak: Prevalence, monoclonal antibody subgrouping and effect of control measures. Epidemiol. Infect. 98: 253-262. https://doi.org/10.1017/S0950268800062002
  35. Sarovart, S., B. Sudatis, P. Meesilpa, B. P. Grady, and R. Magaraphan. 2003. The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Rev. Adv. Mater. Sci. 5: 193-198.
  36. Saxena, G., A. Mccutcheon, S. Farmer, G. Towers, and R. Hancock. 1994. Antimicrobial constituents of Rhus glabra. J. Ethnopharmacol. 42: 95-99. https://doi.org/10.1016/0378-8741(94)90102-3
  37. Sondi, I. and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agents: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface. Sci. 275: 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
  38. Thomas, D., P. Penicot, P. Contal, D. Leclerc, and J. Vendel. 2001. Clogging of fibrous filters by solid aerosol particles: Experimental and modelling study. Chem. Eng. Sci. 56: 3549-3561. https://doi.org/10.1016/S0009-2509(01)00041-0
  39. Verdenelli, M. C., C. Cecchini, C. Orpianesi, G. M. Dadea, and A. Cresci. 2003. Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J. Appl. Microbiol. 94: 9-15. https://doi.org/10.1046/j.1365-2672.2003.01820.x
  40. Waage, S. and P. Hedin. 1985. Quercetin 3-O-galactosyl-(1-6)-glucoside, a compound from narrow leaf vetch with antibacterial activity. Phytochemistry 24: 243-245. https://doi.org/10.1016/S0031-9422(00)83528-1
  41. Wang, H., R. L. Wick, and B. Xing. 2009. Toxicity of nanoparticulate and bulk ZnO, $Al_2O_3$ and $TiO_2$ to the nematode Caenorhabditis elegans. Environ. Pollut. 157: 1171-1177. https://doi.org/10.1016/j.envpol.2008.11.004
  42. Wang, M. and G. Brion. 2007. Effects of RH on glass microfiber filtration efficiency for airborne bacteria and bacteriophage over time. Aerosol Sci. Tech. 41: 775-785. https://doi.org/10.1080/02786820701455351
  43. Warriner, K., G. Rysstad, A. Murden, P. Rumsby, D. Thomas, and W. Waites. 2000. Inactivation of Bacillus subtilis spores on packaging surfaces by UV excimer laser irradiation. J. Appl. Microbiol. 88: 678-685. https://doi.org/10.1046/j.1365-2672.2000.01015.x
  44. Yamamoto, K., S. Ohashi, M. Aono, T. Kokubo, I. Yamada, and J. Yamauchi. 1996. Antibacterial activity of silver ions implanted in $SiO_2$ filler on oral streptococci. Dent. Mater. 12: 227-229. https://doi.org/10.1016/S0109-5641(96)80027-3
  45. Yassin, M. F. and S. Almouqatea. 2010. Assessment of airborne bacteria and fungi in an indoor and outdoor environment. Int. J. Environ. Sci. Technol. 7: 535-544. https://doi.org/10.1007/BF03326162
  46. Yoon, M. and J. Park. 2009. Effect of $SiO_2$-ionized loess on the treatment of tinea pedis. Biotechnol. Bioprocess. Eng. 14: 400-405. https://doi.org/10.1007/s12257-009-0043-x
  47. Young, S. and P. Setlow. 2003. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. J. Appl. Microbiol. 95: 54-67. https://doi.org/10.1046/j.1365-2672.2003.01960.x
  48. Youil, R., Q. Su, T. Toner, C. Szymkowiak, W. S. Kwan, B. Rubin, et al. 2004. Comparative study of influenza virus replication in Vero and MDCK cell lines. J. Virol. Methods 120: 23-31. https://doi.org/10.1016/j.jviromet.2004.03.011
  49. Zheng, X., K. Li, R. Wang, L. Zhao, L. X. Xu, Y. Chen, et al. 2004. Experimental investigation of integrated air purifying technology for bioaerosol removal and inactivation in central airconditioning system. Chinese Sci. Bull. 49: 306-310. https://doi.org/10.1007/BF03182817
  50. Zhenqiang, X., W. Yan, S. Fangxia, C. Qi, T. Miaomiao, and Y. Maosheng. 2011. Bioaerosol science, technology, and engineering: Past, present, and future. Aerosol Sci. Tech. 45: 1337-1349. https://doi.org/10.1080/02786826.2011.593591

Cited by

  1. Bench-Scale Aerosol Filtration Test System and Evaluation of an Acoustic Bioaerosol Removal Device for Indoor Air Streams vol.47, pp.12, 2012, https://doi.org/10.1080/02786826.2013.835026
  2. Development of antibacterial and antifungal silver‐coated polyurethane foams as air filtration units for the prevention of respiratory diseases vol.116, pp.3, 2012, https://doi.org/10.1111/jam.12402
  3. An experimental investigation of the performance of a Collison nebulizer generating H1N1 influenza aerosols vol.29, pp.6, 2012, https://doi.org/10.1080/13102818.2015.1059736
  4. Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters vol.9, pp.7, 2019, https://doi.org/10.3390/membranes9070087