DOI QR코드

DOI QR Code

Enzymatic Synthesis of Puerarin Glucosides Using Leuconostoc Dextransucrase

  • Ko, Jin-A (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Young Bae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Tae-Soon (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Hyung Jae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jang-Hoon (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Su-Jin (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Joong-Su (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Doman (School of Biological Sciences and Technology and the Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Young-Min (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Woo Song (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2012.02.06
  • Accepted : 2012.04.22
  • Published : 2012.09.28

Abstract

Puerarin (P), an isoflavone derived from kudzu roots, has strong biological activities, but its bioavailability is often limited by its low water solubility. To increase its solubility, P was glucosylated by three dextransucrases from Leuconostoc or Streptococcus species. Leuconostoc lactis EG001 dextransucrase exhibited the highest productivity of puerarin glucosides (P-Gs) among the three tested enzymes, and it primarily produced two P-Gs with a 53% yield. Their structures were identified as ${\alpha}$-$_D$-glucosyl-($1{\rightarrow}6$)-P (P-G) by using LC-MS or $^1H$- or $^{13}C$-NMR spectroscopies and ${\alpha}$-$_D$-isomaltosyl-($1{\rightarrow}6$)-P (P-IG2) by using specific enzymatic hydrolysis, and their solubilities were 15- and 202-fold higher than that of P, respectively. P-G and P-IG2 are easily applicable in the food and pharmaceutical industries as alternative functional materials.

Keywords

References

  1. Benlhabib, E., J. I. Baker, D. E. Keyler, and A. K. Singh. 2004. Effects of purified puerarin on voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol. J. Med. Food 7: 180-186. https://doi.org/10.1089/1096620041224102
  2. Boue, S. M., T. E. Wises, S. Nehls, M. E. Burow, S. Elliott, C. H. Carter-Wientjes, et al. 2003. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J. Agric. Food Chem. 51: 2193-2199. https://doi.org/10.1021/jf021114s
  3. Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Choi, C. H., S. H. Kim, J. H. Jang, J. T. Park, J. H. Shim, Y. W. Kim, and K. H. Park. 2010. Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from Bacillus stearothermophilus expressed in Bacillus subtilis. J. Sci. Food Agric. 90: 1179-1184. https://doi.org/10.1002/jsfa.3945
  5. Chung, H. J., M. J. Chung, S. J. Houng, J. G. Jeun, D. K. Kweon, C. H. Choi, et al. 2009. Toxicological evaluation of the isoflavone puerarin and its glycosides. Eur. Food Res. Technol. 230: 145-153. https://doi.org/10.1007/s00217-009-1156-3
  6. Chung, M. J., M. J. Sung, C. S. Park, D. K. Kweon, A. Mantovani, T. W. Moon, et al. 2008. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur. J. Pharmacol. 578: 159-170. https://doi.org/10.1016/j.ejphar.2007.09.036
  7. Ito, K., S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki, T. Misaka, et al. 2011. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408: 177-186. https://doi.org/10.1016/j.jmb.2011.02.028
  8. Jiang, J. R., S. Yuan, J. F. Ding, S. C. Zhu, H. D. Xu, T. Chen, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657. https://doi.org/10.1007/s00253-008-1683-z
  9. Kim, Y. M., M. J. Yeon, N. S. Choi, Y. H. Chang, M. Y. Jung, J. J. Song, and J. S. Kim. 2010. Purification and characterization of a novel glucansucrase from Leuconostoc lactis EG001. Microbiol. Res. 165: 384-391. https://doi.org/10.1016/j.micres.2009.08.005
  10. Kimura, A., M. Takata, O. Sakai, H. Matsui, N. Takai, T. Takayanagi, et al. 1992. Complete amino acid sequence of crystalline alpha-glucosidase from Aspergillus niger. Biosci. Biotechnol. Biochem. 56: 1368-1370. https://doi.org/10.1271/bbb.56.1368
  11. Li, D., S. H. Park, J. H. Shim, H. S. Lee, S. Y. Tang, C. S. Park, and K. H. Park. 2004. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 339: 2789-2797. https://doi.org/10.1016/j.carres.2004.09.017
  12. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  13. Moon, Y. H., G. Kim, J. H. Lee, X. J. Jin, D. W. Kim, and D. Kim. 2006. Enzymatic synthesis and characterization of novel epigallocatechin gallate glucosides. J. Mol. Catal. B Enzym. 40: 1-7. https://doi.org/10.1016/j.molcatb.2006.01.030
  14. Mori, M., T. Aizawa, M. Tokoro, T. Miki, and Y. Yamori. 2004. Soy isoflavone tablets reduce osteoporosis risk factors and obesity in middle-aged Japanese women. Clin. Exp. Pharmacol. Physicol. 31: S44-S46. https://doi.org/10.1111/j.1440-1681.2004.04118.x
  15. Nguyen, V. D., B. C. Min, M. O. Kyung, J. T. Park, B. H. Lee, C. H. Choi, et al. 2009. Identification of a naturally-occurring 8-[${\alpha}$-D-glucopyranosyl-(1-6)-${\beta}$-D-glucopyranosyl] daidzein from cultivated kudzu root. Phytochem. Anal. 20: 450-455.
  16. Park, T. S., H. J. Jeong, J. A. Ko, Y. B. Ryu, S. J. Park, D. Kim, et al. 2012. Biochemical characterization of thermophilic dextranase from thermophilic bacterium, Thermoanaerobacter pseudethanolicus. J. Microbiol. Biotechnol. 22: 637-641. https://doi.org/10.4014/jmb.1112.12024
  17. Robyt, J. F., S. H. Yoon, and R. Mukerjea. 2008. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr. Res. 343: 3039-3048. https://doi.org/10.1016/j.carres.2008.09.012
  18. Seo, E. S., J. H. Lee, J. Y. Park, D. Kim, H. J. Han, and J. F. Robyt. 2005. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. J. Biotechnol. 117: 31-38. https://doi.org/10.1016/j.jbiotec.2004.10.013
  19. Shimamura, A., Y. J. Nakano, H. Mukasa, and H. K. Kuramitsu. 1994. Identification of amino acid residues in Streptococcus mutans glucosyltransferase influencing the structure of the glucan product. J. Bacteriol. 176: 4845-4850. https://doi.org/10.1128/jb.176.16.4845-4850.1994
  20. Su, D. and J. F. Robyt. 1993. Control of the synthesis of dextran and acceptor-products by Leuconostoc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476.
  21. Yu, C., H. Xu, G. Hung, T. Chen, G. Liu, N. Chai, et al. 2010. Permeabilization of Microbacterium oxylans shifts the conversion of puerarin from puerarin-7-O-glucoside to puerarin-7-O-fructoside. Appl. Microbiol. Biotechnol. 86: 863-870. https://doi.org/10.1007/s00253-009-2341-9

Cited by

  1. Recent biotechnological progress in enzymatic synthesis of glycosides vol.40, pp.12, 2012, https://doi.org/10.1007/s10295-013-1332-0
  2. Glycosylation enables aesculin to activate Nrf2 vol.6, pp.None, 2012, https://doi.org/10.1038/srep29956
  3. Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin vol.33, pp.2, 2012, https://doi.org/10.1007/s11274-017-2208-7
  4. Optimization of Glycosyl Aesculin Synthesis by Thermotoga neapolitana β-Glucosidase Using Response-surface Methodology vol.27, pp.1, 2017, https://doi.org/10.5352/jls.2017.27.1.38
  5. Glycosylation Enhances the Physicochemical Properties of Caffeic Acid Phenethyl Ester vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1706.06017
  6. Recent progress on biological production of α-arbutin vol.102, pp.19, 2012, https://doi.org/10.1007/s00253-018-9241-9
  7. Enzymatic Synthesis of Puerarin Glucosides Using Cyclodextrin Glucanotransferase with Enhanced Antiosteoporosis Activity vol.5, pp.21, 2012, https://doi.org/10.1021/acsomega.0c00950