References
- Benlhabib, E., J. I. Baker, D. E. Keyler, and A. K. Singh. 2004. Effects of purified puerarin on voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol. J. Med. Food 7: 180-186. https://doi.org/10.1089/1096620041224102
- Boue, S. M., T. E. Wises, S. Nehls, M. E. Burow, S. Elliott, C. H. Carter-Wientjes, et al. 2003. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J. Agric. Food Chem. 51: 2193-2199. https://doi.org/10.1021/jf021114s
- Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Choi, C. H., S. H. Kim, J. H. Jang, J. T. Park, J. H. Shim, Y. W. Kim, and K. H. Park. 2010. Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from Bacillus stearothermophilus expressed in Bacillus subtilis. J. Sci. Food Agric. 90: 1179-1184. https://doi.org/10.1002/jsfa.3945
- Chung, H. J., M. J. Chung, S. J. Houng, J. G. Jeun, D. K. Kweon, C. H. Choi, et al. 2009. Toxicological evaluation of the isoflavone puerarin and its glycosides. Eur. Food Res. Technol. 230: 145-153. https://doi.org/10.1007/s00217-009-1156-3
- Chung, M. J., M. J. Sung, C. S. Park, D. K. Kweon, A. Mantovani, T. W. Moon, et al. 2008. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur. J. Pharmacol. 578: 159-170. https://doi.org/10.1016/j.ejphar.2007.09.036
- Ito, K., S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki, T. Misaka, et al. 2011. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408: 177-186. https://doi.org/10.1016/j.jmb.2011.02.028
- Jiang, J. R., S. Yuan, J. F. Ding, S. C. Zhu, H. D. Xu, T. Chen, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657. https://doi.org/10.1007/s00253-008-1683-z
- Kim, Y. M., M. J. Yeon, N. S. Choi, Y. H. Chang, M. Y. Jung, J. J. Song, and J. S. Kim. 2010. Purification and characterization of a novel glucansucrase from Leuconostoc lactis EG001. Microbiol. Res. 165: 384-391. https://doi.org/10.1016/j.micres.2009.08.005
- Kimura, A., M. Takata, O. Sakai, H. Matsui, N. Takai, T. Takayanagi, et al. 1992. Complete amino acid sequence of crystalline alpha-glucosidase from Aspergillus niger. Biosci. Biotechnol. Biochem. 56: 1368-1370. https://doi.org/10.1271/bbb.56.1368
- Li, D., S. H. Park, J. H. Shim, H. S. Lee, S. Y. Tang, C. S. Park, and K. H. Park. 2004. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 339: 2789-2797. https://doi.org/10.1016/j.carres.2004.09.017
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Moon, Y. H., G. Kim, J. H. Lee, X. J. Jin, D. W. Kim, and D. Kim. 2006. Enzymatic synthesis and characterization of novel epigallocatechin gallate glucosides. J. Mol. Catal. B Enzym. 40: 1-7. https://doi.org/10.1016/j.molcatb.2006.01.030
- Mori, M., T. Aizawa, M. Tokoro, T. Miki, and Y. Yamori. 2004. Soy isoflavone tablets reduce osteoporosis risk factors and obesity in middle-aged Japanese women. Clin. Exp. Pharmacol. Physicol. 31: S44-S46. https://doi.org/10.1111/j.1440-1681.2004.04118.x
-
Nguyen, V. D., B. C. Min, M. O. Kyung, J. T. Park, B. H. Lee, C. H. Choi, et al. 2009. Identification of a naturally-occurring 8-[
${\alpha}$ -D-glucopyranosyl-(1-6)-${\beta}$ -D-glucopyranosyl] daidzein from cultivated kudzu root. Phytochem. Anal. 20: 450-455. - Park, T. S., H. J. Jeong, J. A. Ko, Y. B. Ryu, S. J. Park, D. Kim, et al. 2012. Biochemical characterization of thermophilic dextranase from thermophilic bacterium, Thermoanaerobacter pseudethanolicus. J. Microbiol. Biotechnol. 22: 637-641. https://doi.org/10.4014/jmb.1112.12024
- Robyt, J. F., S. H. Yoon, and R. Mukerjea. 2008. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr. Res. 343: 3039-3048. https://doi.org/10.1016/j.carres.2008.09.012
- Seo, E. S., J. H. Lee, J. Y. Park, D. Kim, H. J. Han, and J. F. Robyt. 2005. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. J. Biotechnol. 117: 31-38. https://doi.org/10.1016/j.jbiotec.2004.10.013
- Shimamura, A., Y. J. Nakano, H. Mukasa, and H. K. Kuramitsu. 1994. Identification of amino acid residues in Streptococcus mutans glucosyltransferase influencing the structure of the glucan product. J. Bacteriol. 176: 4845-4850. https://doi.org/10.1128/jb.176.16.4845-4850.1994
- Su, D. and J. F. Robyt. 1993. Control of the synthesis of dextran and acceptor-products by Leuconostoc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476.
- Yu, C., H. Xu, G. Hung, T. Chen, G. Liu, N. Chai, et al. 2010. Permeabilization of Microbacterium oxylans shifts the conversion of puerarin from puerarin-7-O-glucoside to puerarin-7-O-fructoside. Appl. Microbiol. Biotechnol. 86: 863-870. https://doi.org/10.1007/s00253-009-2341-9
Cited by
- Recent biotechnological progress in enzymatic synthesis of glycosides vol.40, pp.12, 2012, https://doi.org/10.1007/s10295-013-1332-0
- Glycosylation enables aesculin to activate Nrf2 vol.6, pp.None, 2012, https://doi.org/10.1038/srep29956
- Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin vol.33, pp.2, 2012, https://doi.org/10.1007/s11274-017-2208-7
- Optimization of Glycosyl Aesculin Synthesis by Thermotoga neapolitana β-Glucosidase Using Response-surface Methodology vol.27, pp.1, 2017, https://doi.org/10.5352/jls.2017.27.1.38
- Glycosylation Enhances the Physicochemical Properties of Caffeic Acid Phenethyl Ester vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1706.06017
- Recent progress on biological production of α-arbutin vol.102, pp.19, 2012, https://doi.org/10.1007/s00253-018-9241-9
- Enzymatic Synthesis of Puerarin Glucosides Using Cyclodextrin Glucanotransferase with Enhanced Antiosteoporosis Activity vol.5, pp.21, 2012, https://doi.org/10.1021/acsomega.0c00950