DOI QR코드

DOI QR Code

Homology Modeling and Docking Studies of Streptomyces peucetius CYP147F1 as Limonene Hydroxylase

  • Bhattarai, Saurabh (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Liou, Kwangkyoung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
  • Received : 2011.12.21
  • Accepted : 2012.02.24
  • Published : 2012.07.28

Abstract

Homology modeling of Streptomyces peucetius CYP147F1 was constructed using three cytochrome P450 structures, CYP107L1, CYPVdh, and CYPeryF, as templates. The lowest energy SPCYP147F1 model was then assessed for stereochemical quality and side-chain environment by Accelrys Discovery Studio 3.1 software. Further activesite optimization of the SPCYP147F1 was performed by molecular dynamics to generate the final SPCYP147F1 model. The substrate limonene was then docked into the model. The model-limonene complex was used to validate the active-site architecture, and functionally important residues within the substrate recognition site were identified by subsequent characterization of the secondary structure. The docking of limonene suggested that SPCYP147F1 would have broad specificity with the ligand based on the two different orientations of limonene within the active site facing to the heme. Limonene with C7 facing the heme with distance of $3.4{\AA}$ from the Fe was predominant.

Keywords

References

  1. Bernhardt, R. 1996. Cytochrome P450: Structure, function, and generation of reactive oxygen species. Rev. Physiol. Biochem. Pharmacol. 127: 137-221.
  2. Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4: 187-217. https://doi.org/10.1002/jcc.540040211
  3. Cupp-Vickery, J., R. Anderson, and Z. Hatziris. 2000. Crystal structures of ligand complexes of P450eryF exhibiting homotropic cooperativity. Proc. Natl. Acad. Sci. USA 97: 3050-3055. https://doi.org/10.1073/pnas.97.7.3050
  4. Discovery Studio 3.1. 2011. Accelrys Inc., San Diego, CA, USA. Available from: http://www.accelrys.com.
  5. Gotoh, O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83-90.
  6. Hamdane, D., H. Zhang, and P. Hollenberg. 2008. Oxygen activation by cytochrome P450 monooxygenase. Photosynthes. Res. 98: 657-666. https://doi.org/10.1007/s11120-008-9322-1
  7. Hasemann, C. A., S. S. Kurumbail, S. S. Boddupalli, J. A. Peterson, and J. Deisenhofer. 1995. Structure and function of cytochrome P450: A comparative analysis of three crystal structures. Structure 2: 41-62.
  8. Hayashi, K., H. Sugimoto, R. Shinkyo, M. Yamada, S. Ikeda, S. Ikushiro, M. Kamakura, Y. Shiro, and T. Sakaki. 2008. Structure-based design of highly active vitamin D hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry 47: 11964-11972. https://doi.org/10.1021/bi801222d
  9. Lewis, D. F., E. Watson, and B. G. Lake. 1998. Evolution of the cytochrome P450 super-family: Sequence alignments and pharmacogenetics. Mutat. Res. 410: 245-270. https://doi.org/10.1016/S1383-5742(97)00040-9
  10. Lovell, S. C., I. Q. Davis, W. B. Arendall III, P. I. De Bakker, J. M. Word, M. G. Prisant, J. C. Richardson, and D. C. Richardson. 2003. Structure validation by C alpha geometry: Phi, psi and C beta deviation. Proteins 50: 437-450. https://doi.org/10.1002/prot.10286
  11. Maiti, R., G. H. Van Domselaar, H. Zhang, and D. S. Wishart. 2004. SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Res. 32: W590-W594. https://doi.org/10.1093/nar/gkh477
  12. Mars, A. E., J. P. Gorissen, I. van den Beld, and G. Eggink. 2001. Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor. Appl. Microbiol. Biotechnol. 56: 101-107. https://doi.org/10.1007/s002530100625
  13. Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Feyereisen, D. J. Waxman, et al. 1996. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42. https://doi.org/10.1097/00008571-199602000-00002
  14. Oriel, P. J., S. Savithiry, and H. C. Chang. 1997. Process for the preparation of monoterpenes using bacterium containing recombinant DNA. U.S. patent 5,688,673.
  15. Ortiz de Montellano, P. R. 2004. Cytochrome P450 structure, mechanism, and biochemistry, pp. 183-247. In P. R. Ortiz de Montellano and De J. J. Voss. (eds.). Substrate Oxidation by Cytochrome P450 Enzymes. Kluwer Academic/PlenumPublishers, NewYork
  16. Sali, A., L. Pottertone, F. Yuan, H. Van Vlijmen, and M. Karplus. 1995. Evaluation of comparative protein modeling by MODELLER. Prot. Struct. Funct. Genet. 23: 318-326. https://doi.org/10.1002/prot.340230306
  17. Seifert, A., M. Antonovici, B. Hauer, and J. Pleiss. 2011. An efficient route to selective bio-oxidation catalysts: An iterative approach comprising modeling, diversification, and screening, based on CYP102A1. ChemBioChem 12: 1346-1351. https://doi.org/10.1002/cbic.201100067
  18. Sherman, D. H., L. Shengying, L. V. Yermalitskaya, Y. Kim, J. A. Smith, M. R. Waterman, and L. M. Podust. 2006. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem. 281: 26289-26297. https://doi.org/10.1074/jbc.M605478200
  19. Sippl, M. J. 1993. Recognition of errors in three-dimensional structures of proteins. Proteins 17: 355-362. https://doi.org/10.1002/prot.340170404
  20. The ExPASy (Expert ProteinAnalysis System) proteomics server of the Swiss Institute of Bioinformatics (SIB). Available from: http://ca.expasy.org.
  21. Venkatachalam, C. M., X. Jiang, T. Oldeld, and M. Waldman. 2003. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21: 289-307. https://doi.org/10.1016/S1093-3263(02)00164-X
  22. Wagner, K. H. and I. Elmadfa. 2003. Biological relevance of terpenoids. Ann. Nutr. Metab. 47: 95-106. https://doi.org/10.1159/000070030
  23. Yasutake, Y., Y. Fujii, T. Nishioka, W. K. Cheon, A. Arisawa, and T. Tamura. 2010. Structural evidence for enhancement of sequential vitamin D3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D3 hydroxylase. J. Biol. Chem. 285: 31193-31201. https://doi.org/10.1074/jbc.M110.147009

Cited by

  1. Homology Modeling and In Vitro Analysis for Characterization of Streptomyces peucetius CYP157C4 vol.25, pp.9, 2015, https://doi.org/10.4014/jmb.1504.04057
  2. Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities vol.15, pp.None, 2012, https://doi.org/10.1186/s12934-016-0533-4
  3. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function vol.34, pp.9, 2012, https://doi.org/10.1039/c7np00034k