DOI QR코드

DOI QR Code

Electrically Programmable Fuse - Application, Program and Reliability

전기적 프로그램이 가능한 퓨즈 - 응용, 프로그램 및 신뢰성

  • 김덕기 (세종대학교 전자공학과)
  • Received : 2012.08.30
  • Accepted : 2012.09.07
  • Published : 2012.09.30

Abstract

Technology trend and application of laser fuse, anti-fuse, and eFUSE as well as the structure, programming mechanism, and reliability of eFUSE have been reviewed. In order to ensure eFUSE reliability in the field, a sensing circuit trip point consistent with the fuse resistance distribution, process variation, and device degradation in the circuit such as hot carrier or NBTI, as well as fuse resistance reliability must be considered to optimize and define a reliable fuse programming window.

Keywords

References

  1. R. F. Rizzolo, T. G. Foote, J. M. Crafts, D. A. Grosch, T. O. Leung, D. J. Lund, B. L. Mechtly, B. J. Robbins, T. J. Slegel, M. J. Tremblay and G. A. Wiedemeier, "IBM System z9 eFUSE applications and methodology", IBM J. Res. & Dev., 51, 65 (2007). https://doi.org/10.1147/rd.511.0065
  2. D. Kim, A. Domenicucci and S. S. Iyer, "An investigation of electrical current induced phase transformations in the NiPtSi/ polysilicon system", J. Appl. Phys., 103(7), 073708 (2008). https://doi.org/10.1063/1.2899959
  3. T. H. Daubenspeck, T. L. McDevitt, W. T. Motsiff and A. K. Stamper, "Triple Damascene Fuse", U.S. Patent 6, 667, 533, December (2003).
  4. K. N. Tu, "Recent advances on electromigration in very-largescale- integration of interconnects", J. Appl. Phys., 94, 5451 (2003). https://doi.org/10.1063/1.1611263
  5. M. Alavi, M. Bohr, J. Hicks, M. Denham, A. Cassens, D. Douglas and M. Tsai, "A PROM element based on salicide agglomeration of poly fuses in a CMOS logic process", IEDM Technical Digest, Washington, DC, 855 (1997).
  6. T. S. Doorn and M. Altheimer, "Ultra-fast programming of silicided polysilicon fuses based on new insights in the programming physics", IEDM Technical Digest, Washington, DC, 667 (2005).
  7. J. Fellner, P. Boesmueller and H. Reiter, "Lifetime study for a poly fuse in a 0.35 ${\mu}m$ polycide CMOS process", IRPS Proc. 43rd IEEE, San Jose, California, 446 (2005).
  8. T. Sasaki, N. Otsuka, K. Hisimo and S. Fujii, "Melt-segregate- quench programming of electrical fuse", IRPS Proc. 43rd IEEE, San Jose, CA, 347 (2005).
  9. A. Kalnitsky, I. Saadat, A. Bergemont and P. Francis, "$CoSi_{2}$ integrated fuses on poly silicon for low voltage 0.18 ${\mu}m$ CMOS applications", IEDM Technical Digest, Washington, DC, 765 (1999).
  10. T. Ueda, H. Takaoka, M. Hamada, Y. Kobayashi and A. Ono, "A novel Cu electrical fuse structure and blowing scheme utilizing crack-assisted mode for 90-45 nm-node and beyond", Proc. Symp. on VLSI Tech. Dig. of Technical Paper, Honolulu, HI, 138, (2006).
  11. S. Kulkarni, Z. Chen, J. Je, L. Jiang, B. Pedersen and K. Zhang, "Highdensity 3-D metal-fuse PROM featuring 1.37 ${\mu}m^{2}$ 1T1R bit cell in 32 nm high- k metal-gate CMOS technology", Proc. Symp. VLSI Circuits Dig. Tech. Paper, 28, (2009).
  12. E. Misra, C. Marenco, N. D. Theodore and T. L. Alford, "Failure mechanisms of silver and aluminum on titanium nitride under high current stress", Thin Solid Films, 474(1/2), 235 (2005). https://doi.org/10.1016/j.tsf.2004.02.103
  13. D. K. Kim and Y. D. Park, "Polarity-Dependent Morphological Changes of Ti/TiN/W via Under High Current Density", IEEE Electron Device Letters, 31(2), 120 (2010). https://doi.org/10.1109/LED.2009.2036573
  14. D. K. Kim, S. J. Hwang and Y. C. Joo, "Failure Mechanisms of W/TiN/Ti Metal Lines under High Current Stressing", Appl. Phys. Express, 5, 025801 (2012). https://doi.org/10.1143/APEX.5.025801
  15. D. K. Kim and S. J. Hwang, "Time-Dependent Changes in Morphology and Resistance of W/TiN/Ti Metal Lines upon Applying Voltage Pulses", Thin Solid Films, 520, 6020 (2012). https://doi.org/10.1016/j.tsf.2012.05.007
  16. K. Maex and M. V. Rossum, "Properties of Metal Silicides", pp.20, INSPEC, London, (1995).
  17. I. A. Blech, "Electromigration in thin aluminum films on titanium nitride", J. Appl. Phys., 47, 1203 (1976). https://doi.org/10.1063/1.322842
  18. C. W. Chang, C. V. Thompson, C. L. Gan, K. L. Pey, W. K. Choi and Y. K. Lim, "Effects of microvoids on the linewidth dependence of electromigration failure of dual-damascene copper interconnects", Appl. Phys. Lett., 90, 193505, (2007). https://doi.org/10.1063/1.2714315
  19. Y. H. Kim, Y. B. Park and Y. C. Joo, "Electromigratoin and thermal fatigue in Cu mentallization for ULSI", Microelectron. Packag. Soc., 12(1), 53 (2005).
  20. K. Yamanaka, "Electromigration and Thermomigration in Flip- Chip Joints in a High Wiring Density Semiconductor Package", J. Microelectron. Packag. Soc., 18(3), 67 (2011).
  21. T. Tan, "Mass transport equations unifying descriptions of isothermal diffusion, thermomigration, segregation, and position- dependent diffusivity", Appl. Phys. Lett., 73(18), 2678 (1998). https://doi.org/10.1063/1.122551
  22. D. Jaffe and P.G. Shewmon, "Thermal diffusion of substitutional impurities in copper, gold and silver", Acta Metall., 12(5), 515 (1964). https://doi.org/10.1016/0001-6160(64)90024-0
  23. J. R. Black, "Electromigration-A brief survey and some recent results", IEEE Trans. Electron Devices, 16(4), 338 (1969). https://doi.org/10.1109/T-ED.1969.16754
  24. P. M. Davidson, "The theory of the Thomson effect in electrical contacts", Proc. Inst. Elect. Eng., 96(1), 293 (1949).
  25. D. Castro, L. Goux, G. Hurkx, K. Attenborough, R. Delhougne, J. Lisoni, F. Jedema,M. Zandt, R. Wolters, D. Gravesteijn, M. Verheijen, M. Kaiser, R. Weemaes and D. Wouters, "Evidence of the thermo-electric Thomson effect and influence on the program conditions and cell optimization in phase-change memory cells", IEDM Technical Digest, Washington, DC, 315 (2007).
  26. C. Tian, B. Park, C. Kothandaraman, J. Safran, D. Kim, N. Robson and S. S. Iyer, "Reliability Qualification of CoSi2 Electrical Fuse for 90 nm Technology", IRPS Proc. 44th IEEE, San Jose, CA, 392 (2006).