DOI QR코드

DOI QR Code

Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages

  • Vo, Van Anh (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Lee, Jae-Won (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Chang, Ji-Eun (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Ji-Young (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Nam-Ho (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Lee, Hee Jae (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Sung-Soo (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Chun, Wanjoo (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kwon, Yong-Soo (College of Pharmacy, Kangwon National University)
  • Received : 2012.10.26
  • Accepted : 2012.11.20
  • Published : 2012.11.30

Abstract

Avicularin, quercetin-3-${\alpha}$-L-arabinofuranoside, has been reported to possess diverse pharmacological properties such as anti-inflammatory and anti-infectious effects. However, the underlying mechanism by which avicularin exerts its anti-inflammatory activity has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of avicularin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Avicularin significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein levels of iNOS and COX-2, which are responsible for the production of NO and $PGE_2$, respectively. Avicularin also suppressed LPS-induced overproduction of pro-inflammatory cytokine IL-$1{\beta}$. Furthermore, avicularin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. To understand the underlying signaling mechanism of anti-inflammatory activity of avicularin, involvement of multiple kinases was examined. Avicularin significantly attenuated LPS-induced activation of ERK signaling pathway in a concentration-dependent manner. Taken together, the present study clearly demonstrates that avicularin exhibits anti-inflammatory activity through the suppression of ERK signaling pathway in LPS-stimulated RAW 264.7 macrophage cells.

Keywords

References

  1. Akao, T., Kobashi, K. and Aburada, M. (1994) Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol. Pharm. Bull. 17, 1573-1576. https://doi.org/10.1248/bpb.17.1573
  2. Aligiannis, N., Mitaku, S., Mitrocotsa, D. and Leclerc, S. (2001) Flavonoids as cycline-dependent kinase inhibitors: inhibition of cdc 25 phosphatase activity by flavonoids belonging to the quercetin and kaempferol series. Planta Med. 67, 468-470. https://doi.org/10.1055/s-2001-15807
  3. Arts, I. C., Sesink, A. L., Faassen-Peters, M. and Hollman, P. C. (2004) The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br. J. Nutr. 91, 841-847. https://doi.org/10.1079/BJN20041123
  4. Dixon, R. A. and Steele, C. L. (1999) Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci. 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
  5. Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  6. Ha, H. J., Kwon, Y. S., Park, S. M., Shin, T., Park, J. H., Kim, H. C., Kwon, M. S. and Wie, M. B. (2003) Quercetin attenuates oxygen-glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures. Biol. Pharm. Bull. 26, 544-546. https://doi.org/10.1248/bpb.26.544
  7. Havsteen, B. (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32, 1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
  8. Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B. and Kromhout, D. (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342, 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  9. Hou, L., Zhou, B., Yang, L. and Liu, Z. L. (2004). Inhibition of free radical initiated peroxidation of human erythrocyte ghosts by flavonols and their glycosides. Org. Biomol. Chem. 2, 1419-1423. https://doi.org/10.1039/b401550a
  10. Itharat, A. and Hiransai, P. (2012) Dioscoreanone suppresses LPS-induced nitric oxide production and inflammatory cytokine expression in RAW 264.7 macrophages by NF-kappaB and ERK1/2 signaling transduction. J. Cell. Biochem. 113, 3427-3435. https://doi.org/10.1002/jcb.24219
  11. Karin, M., Takahashi, T., Kapahi, P., Delhase, M., Chen, Y., Makris, C., Rothwarf, D., Baud, V., Natoli, G., Guido, F. and Li, N. (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15, 87-89. https://doi.org/10.1002/biof.5520150207
  12. Kim, G. B., Shin, K. S., Kim, C. M. and Kwon, Y. S. (2006) Flavonoids from the leaves of Rhododendron schlipenbachii. Kor. J. Pharmacogn. 37, 177-183.
  13. Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y. and Kim, H. P. (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58, 759-765. https://doi.org/10.1016/S0006-2952(99)00160-4
  14. Kim, J. A., Jung, Y. S., Kim, M. Y., Yang, S. Y., Lee, S. and Kim, Y. H. (2011a) Protective effect of components isolated from Lindera erythrocarpa against oxidative stress-induced apoptosis of H9c2 cardiomyocytes. Phytother. Res. 25, 1612-1617. https://doi.org/10.1002/ptr.3465
  15. Kim, S. M., Kang, K., Jho, E. H., Jung, Y. J., Nho, C. W., Um, B. H. and Pan, C. H. (2011b) Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother. Res. 25, 1011-1017. https://doi.org/10.1002/ptr.3387
  16. Kim, Y. J., Shin, Y., Lee, K. H. and Kim, T. J. (2012) Anethum graveloens flower extracts inhibited a lipopolysaccharide-induced inflammatory response by blocking iNOS expression and NF-kappaB activity in macrophages. Biosci. Biotechnol. Biochem. 76, 1122-1127. https://doi.org/10.1271/bbb.110950
  17. Kuprash, D. V., Udalova, I. A., Turetskaya, R. L., Rice, N. R. and Nedospasov, S. A. (1995) Conserved kappa B element located downstream of the tumor necrosis factor alpha gene: distinct NF-kappa B binding pattern and enhancer activity in LPS activated murine macrophages. Oncogene 11, 97-106.
  18. Kwon, Y. S., Kim, S. S., Sohn, S. J., Kong, P. J., Cheong, I. Y., Kim, C. M. and Chun, W. (2004) Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids. Arch. Pharm. Res. 27, 751-756. https://doi.org/10.1007/BF02980144
  19. Lee, J. W., Bae, C. J., Choi, Y. J., Kim, S. I., Kim, N. H., Lee, H. J., Kim, S. S., Kwon, Y. S. and Chun, W. (2012) 3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-kappaB Activation in BV2 Microglial Cells. Korean J. Physiol. Pharmacol. 16, 107-112. https://doi.org/10.4196/kjpp.2012.16.2.107
  20. Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
  21. Moon, D. O., Park, S. Y., Lee, K. J., Heo, M. S., Kim, K. C., Kim, M. O., Lee, J. D., Choi, Y. H. and Kim, G. Y. (2007) Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol. 7, 1092-1101. https://doi.org/10.1016/j.intimp.2007.04.005
  22. O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M. and Mackman, N. (1998) Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273, 30410-30414. https://doi.org/10.1074/jbc.273.46.30410
  23. Ock, J., Kim, S. and Suk, K. (2009) Anti-inflammatory effects of a fluorovinyloxyacetamide compound KT-15087 in microglia cells. Pharmacol. Res. 59, 414-422. https://doi.org/10.1016/j.phrs.2009.02.008
  24. Rehman, M. U., Yoshihisa, Y., Miyamoto, Y. and Shimizu, T. (2012) The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res. 61, 1177-1185. https://doi.org/10.1007/s00011-012-0512-0
  25. Rietschel, E. T. and Brade, H. (1992) Bacterial endotoxins. Sci. Am. 267, 54-61.
  26. Shabana, S., Kawai, A., Kai, K., Akiyama, K. and Hayashi, H. (2010) Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Biosci. Biotechnol. Biochem. 74, 878-880. https://doi.org/10.1271/bbb.90895
  27. Siebenlist, U., Franzoso, G. and Brown, K. (1994) Structure, regulation and function of NF-kappa B. Annu. Rev. Cell Biol. 10, 405-455. https://doi.org/10.1146/annurev.cb.10.110194.002201
  28. Sweet, M. J. and Hume, D. A. (1996) Endotoxin signal transduction in macrophages. J. Leukoc. Biol. 60, 8-26. https://doi.org/10.1002/jlb.60.1.8
  29. Williams, R. J., Spencer, J. P. and Rice-Evans, C. (2004) Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36, 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
  30. Zheng, L. T., Ock, J., Kwon, B. M. and Suk, K. (2008a) Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol. 8, 484-494. https://doi.org/10.1016/j.intimp.2007.12.012
  31. Zheng, L. T., Ryu, G. M., Kwon, B. M., Lee, W. H. and Suk, K. (2008b) Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur. J. Pharmacol. 588, 106-113. https://doi.org/10.1016/j.ejphar.2008.04.035

Cited by

  1. Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway vol.21, pp.5, 2017, https://doi.org/10.4196/kjpp.2017.21.5.547
  2. Methyl p-Hydroxycinnamate Suppresses Lipopolysaccharide-Induced Inflammatory Responses through Akt Phosphorylation in RAW264.7 Cells vol.22, pp.1, 2014, https://doi.org/10.4062/biomolther.2013.095
  3. Extracellular Signal-Regulated Kinase Is a Direct Target of the Anti-Inflammatory Compound Amentoflavone Derived fromTorreya nucifera vol.2013, 2013, https://doi.org/10.1155/2013/761506
  4. 3-deoxysilybin exerts anti-inflammatory effects by suppressing NF-κB activation in lipopolysaccharide-stimulated RAW264.7 macrophages vol.78, pp.12, 2014, https://doi.org/10.1080/09168451.2014.948377
  5. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated fromOpuntia ficus-indica vol.2015, 2015, https://doi.org/10.1155/2015/847320
  6. Crabapple fruit extracts lower hypercholesterolaemia in high-fat diet-induced obese mice vol.27, 2016, https://doi.org/10.1016/j.jff.2016.09.017
  7. Apocynin Suppresses Lipopolysaccharide-Induced Inflammatory Responses Through the Inhibition of MAP Kinase Signaling Pathway in RAW264.7 Cells vol.77, pp.6, 2016, https://doi.org/10.1002/ddr.21321
  8. Quercetin-3-O-β-D-Glucuronide Suppresses Lipopolysaccharide-Induced JNK and ERK Phosphorylation in LPS-Challenged RAW264.7 Cells vol.24, pp.6, 2016, https://doi.org/10.4062/biomolther.2016.026
  9. Silibinin Inhibits LPS-Induced Macrophage Activation by Blocking p38 MAPK in RAW 264.7 Cells vol.21, pp.4, 2013, https://doi.org/10.4062/biomolther.2013.044
  10. UPLC–MS/MS method for determination of avicularin in rat plasma and its application to a pharmacokinetic study vol.965, 2014, https://doi.org/10.1016/j.jchromb.2014.06.015
  11. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages vol.37, pp.3, 2013, https://doi.org/10.5142/jgr.2013.37.293
  12. Syk and Src are major pharmacological targets of a Cerbera manghas methanol extract with kaempferol-based anti-inflammatory activity vol.151, pp.2, 2014, https://doi.org/10.1016/j.jep.2013.12.009
  13. N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells vol.22, pp.3, 2014, https://doi.org/10.4062/biomolther.2014.013
  14. Flavonoid glycosides fromPersea caerulea. Unraveling their interactions with SDS-micelles through matrix-assisted DOSY, PGSE, mass spectrometry, and NOESY vol.54, pp.9, 2016, https://doi.org/10.1002/mrc.4434
  15. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells vol.18, pp.1, 2014, https://doi.org/10.4196/kjpp.2014.18.1.79
  16. Apocynin protects mesangial cells from lipopolysaccharide-induced inflammation by exerting heme oxygenase 1-mediated monocyte chemoattractant protein-1 suppression vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3090
  17. . vol.15, pp.2, 2018, https://doi.org/10.1002/cbdv.201700415
  18. Screening of ordinary commercial varieties of apple fruits under different storage conditions for their potential vascular and metabolic protective properties pp.2042-650X, 2018, https://doi.org/10.1039/C8FO00967H
  19. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity vol.11, pp.549, 2018, https://doi.org/10.1126/scisignal.aar3721
  20. Phytochemicals and inflammatory bowel disease: a review pp.1549-7852, 2019, https://doi.org/10.1080/10408398.2019.1570913
  21. L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석 vol.60, pp.3, 2012, https://doi.org/10.17480/psk.2016.60.3.128
  22. c-Jun/MMP-1 Inhibitory Effect of Rhododendron brachycarpum via Reactive Oxygen Species (ROS) Regulation vol.13, pp.4, 2012, https://doi.org/10.15810/jic.2017.13.4.002
  23. In vitro and in silico approaches to appraise Polygonum maritimum L. as a source of innovative products with anti-ageing potential vol.111, pp.None, 2012, https://doi.org/10.1016/j.indcrop.2017.10.046
  24. Network Pharmacology and Reverse Molecular Docking-Based Prediction of the Molecular Targets and Pathways for Avicularin Against Cancer vol.22, pp.1, 2019, https://doi.org/10.2174/1386207322666190206163409
  25. Avicularin ameliorates human hepatocellular carcinoma via the regulation of NF-κB/COX-2/PPAR-γ activities vol.19, pp.6, 2012, https://doi.org/10.3892/mmr.2019.10198
  26. Bilberry ( Vaccinium myrtillus L.) Extracts Comparative Analysis Regarding Their Phytonutrient Profiles, Antioxidant Capacity along with the In Vivo Rescue Effects Tested on a Drosophila melanogaste vol.9, pp.11, 2020, https://doi.org/10.3390/antiox9111067
  27. LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/7588711
  28. Stevia Genus: Phytochemistry and Biological Activities Update vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092733