References
- Akao, T., Kobashi, K. and Aburada, M. (1994) Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol. Pharm. Bull. 17, 1573-1576. https://doi.org/10.1248/bpb.17.1573
- Aligiannis, N., Mitaku, S., Mitrocotsa, D. and Leclerc, S. (2001) Flavonoids as cycline-dependent kinase inhibitors: inhibition of cdc 25 phosphatase activity by flavonoids belonging to the quercetin and kaempferol series. Planta Med. 67, 468-470. https://doi.org/10.1055/s-2001-15807
- Arts, I. C., Sesink, A. L., Faassen-Peters, M. and Hollman, P. C. (2004) The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br. J. Nutr. 91, 841-847. https://doi.org/10.1079/BJN20041123
- Dixon, R. A. and Steele, C. L. (1999) Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci. 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
- Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
- Ha, H. J., Kwon, Y. S., Park, S. M., Shin, T., Park, J. H., Kim, H. C., Kwon, M. S. and Wie, M. B. (2003) Quercetin attenuates oxygen-glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures. Biol. Pharm. Bull. 26, 544-546. https://doi.org/10.1248/bpb.26.544
- Havsteen, B. (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32, 1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
- Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B. and Kromhout, D. (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342, 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
- Hou, L., Zhou, B., Yang, L. and Liu, Z. L. (2004). Inhibition of free radical initiated peroxidation of human erythrocyte ghosts by flavonols and their glycosides. Org. Biomol. Chem. 2, 1419-1423. https://doi.org/10.1039/b401550a
- Itharat, A. and Hiransai, P. (2012) Dioscoreanone suppresses LPS-induced nitric oxide production and inflammatory cytokine expression in RAW 264.7 macrophages by NF-kappaB and ERK1/2 signaling transduction. J. Cell. Biochem. 113, 3427-3435. https://doi.org/10.1002/jcb.24219
- Karin, M., Takahashi, T., Kapahi, P., Delhase, M., Chen, Y., Makris, C., Rothwarf, D., Baud, V., Natoli, G., Guido, F. and Li, N. (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15, 87-89. https://doi.org/10.1002/biof.5520150207
- Kim, G. B., Shin, K. S., Kim, C. M. and Kwon, Y. S. (2006) Flavonoids from the leaves of Rhododendron schlipenbachii. Kor. J. Pharmacogn. 37, 177-183.
- Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y. and Kim, H. P. (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58, 759-765. https://doi.org/10.1016/S0006-2952(99)00160-4
- Kim, J. A., Jung, Y. S., Kim, M. Y., Yang, S. Y., Lee, S. and Kim, Y. H. (2011a) Protective effect of components isolated from Lindera erythrocarpa against oxidative stress-induced apoptosis of H9c2 cardiomyocytes. Phytother. Res. 25, 1612-1617. https://doi.org/10.1002/ptr.3465
- Kim, S. M., Kang, K., Jho, E. H., Jung, Y. J., Nho, C. W., Um, B. H. and Pan, C. H. (2011b) Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother. Res. 25, 1011-1017. https://doi.org/10.1002/ptr.3387
- Kim, Y. J., Shin, Y., Lee, K. H. and Kim, T. J. (2012) Anethum graveloens flower extracts inhibited a lipopolysaccharide-induced inflammatory response by blocking iNOS expression and NF-kappaB activity in macrophages. Biosci. Biotechnol. Biochem. 76, 1122-1127. https://doi.org/10.1271/bbb.110950
- Kuprash, D. V., Udalova, I. A., Turetskaya, R. L., Rice, N. R. and Nedospasov, S. A. (1995) Conserved kappa B element located downstream of the tumor necrosis factor alpha gene: distinct NF-kappa B binding pattern and enhancer activity in LPS activated murine macrophages. Oncogene 11, 97-106.
- Kwon, Y. S., Kim, S. S., Sohn, S. J., Kong, P. J., Cheong, I. Y., Kim, C. M. and Chun, W. (2004) Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids. Arch. Pharm. Res. 27, 751-756. https://doi.org/10.1007/BF02980144
- Lee, J. W., Bae, C. J., Choi, Y. J., Kim, S. I., Kim, N. H., Lee, H. J., Kim, S. S., Kwon, Y. S. and Chun, W. (2012) 3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-kappaB Activation in BV2 Microglial Cells. Korean J. Physiol. Pharmacol. 16, 107-112. https://doi.org/10.4196/kjpp.2012.16.2.107
- Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
- Moon, D. O., Park, S. Y., Lee, K. J., Heo, M. S., Kim, K. C., Kim, M. O., Lee, J. D., Choi, Y. H. and Kim, G. Y. (2007) Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol. 7, 1092-1101. https://doi.org/10.1016/j.intimp.2007.04.005
- O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M. and Mackman, N. (1998) Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273, 30410-30414. https://doi.org/10.1074/jbc.273.46.30410
- Ock, J., Kim, S. and Suk, K. (2009) Anti-inflammatory effects of a fluorovinyloxyacetamide compound KT-15087 in microglia cells. Pharmacol. Res. 59, 414-422. https://doi.org/10.1016/j.phrs.2009.02.008
- Rehman, M. U., Yoshihisa, Y., Miyamoto, Y. and Shimizu, T. (2012) The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res. 61, 1177-1185. https://doi.org/10.1007/s00011-012-0512-0
- Rietschel, E. T. and Brade, H. (1992) Bacterial endotoxins. Sci. Am. 267, 54-61.
- Shabana, S., Kawai, A., Kai, K., Akiyama, K. and Hayashi, H. (2010) Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Biosci. Biotechnol. Biochem. 74, 878-880. https://doi.org/10.1271/bbb.90895
- Siebenlist, U., Franzoso, G. and Brown, K. (1994) Structure, regulation and function of NF-kappa B. Annu. Rev. Cell Biol. 10, 405-455. https://doi.org/10.1146/annurev.cb.10.110194.002201
- Sweet, M. J. and Hume, D. A. (1996) Endotoxin signal transduction in macrophages. J. Leukoc. Biol. 60, 8-26. https://doi.org/10.1002/jlb.60.1.8
- Williams, R. J., Spencer, J. P. and Rice-Evans, C. (2004) Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36, 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
- Zheng, L. T., Ock, J., Kwon, B. M. and Suk, K. (2008a) Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol. 8, 484-494. https://doi.org/10.1016/j.intimp.2007.12.012
- Zheng, L. T., Ryu, G. M., Kwon, B. M., Lee, W. H. and Suk, K. (2008b) Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur. J. Pharmacol. 588, 106-113. https://doi.org/10.1016/j.ejphar.2008.04.035
Cited by
- Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway vol.21, pp.5, 2017, https://doi.org/10.4196/kjpp.2017.21.5.547
- Methyl p-Hydroxycinnamate Suppresses Lipopolysaccharide-Induced Inflammatory Responses through Akt Phosphorylation in RAW264.7 Cells vol.22, pp.1, 2014, https://doi.org/10.4062/biomolther.2013.095
- Extracellular Signal-Regulated Kinase Is a Direct Target of the Anti-Inflammatory Compound Amentoflavone Derived fromTorreya nucifera vol.2013, 2013, https://doi.org/10.1155/2013/761506
- 3-deoxysilybin exerts anti-inflammatory effects by suppressing NF-κB activation in lipopolysaccharide-stimulated RAW264.7 macrophages vol.78, pp.12, 2014, https://doi.org/10.1080/09168451.2014.948377
- Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated fromOpuntia ficus-indica vol.2015, 2015, https://doi.org/10.1155/2015/847320
- Crabapple fruit extracts lower hypercholesterolaemia in high-fat diet-induced obese mice vol.27, 2016, https://doi.org/10.1016/j.jff.2016.09.017
- Apocynin Suppresses Lipopolysaccharide-Induced Inflammatory Responses Through the Inhibition of MAP Kinase Signaling Pathway in RAW264.7 Cells vol.77, pp.6, 2016, https://doi.org/10.1002/ddr.21321
- Quercetin-3-O-β-D-Glucuronide Suppresses Lipopolysaccharide-Induced JNK and ERK Phosphorylation in LPS-Challenged RAW264.7 Cells vol.24, pp.6, 2016, https://doi.org/10.4062/biomolther.2016.026
- Silibinin Inhibits LPS-Induced Macrophage Activation by Blocking p38 MAPK in RAW 264.7 Cells vol.21, pp.4, 2013, https://doi.org/10.4062/biomolther.2013.044
- UPLC–MS/MS method for determination of avicularin in rat plasma and its application to a pharmacokinetic study vol.965, 2014, https://doi.org/10.1016/j.jchromb.2014.06.015
- 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages vol.37, pp.3, 2013, https://doi.org/10.5142/jgr.2013.37.293
- Syk and Src are major pharmacological targets of a Cerbera manghas methanol extract with kaempferol-based anti-inflammatory activity vol.151, pp.2, 2014, https://doi.org/10.1016/j.jep.2013.12.009
- N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells vol.22, pp.3, 2014, https://doi.org/10.4062/biomolther.2014.013
- Flavonoid glycosides fromPersea caerulea. Unraveling their interactions with SDS-micelles through matrix-assisted DOSY, PGSE, mass spectrometry, and NOESY vol.54, pp.9, 2016, https://doi.org/10.1002/mrc.4434
- Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells vol.18, pp.1, 2014, https://doi.org/10.4196/kjpp.2014.18.1.79
- Apocynin protects mesangial cells from lipopolysaccharide-induced inflammation by exerting heme oxygenase 1-mediated monocyte chemoattractant protein-1 suppression vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3090
- . vol.15, pp.2, 2018, https://doi.org/10.1002/cbdv.201700415
- Screening of ordinary commercial varieties of apple fruits under different storage conditions for their potential vascular and metabolic protective properties pp.2042-650X, 2018, https://doi.org/10.1039/C8FO00967H
- MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity vol.11, pp.549, 2018, https://doi.org/10.1126/scisignal.aar3721
- Phytochemicals and inflammatory bowel disease: a review pp.1549-7852, 2019, https://doi.org/10.1080/10408398.2019.1570913
- L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석 vol.60, pp.3, 2012, https://doi.org/10.17480/psk.2016.60.3.128
- c-Jun/MMP-1 Inhibitory Effect of Rhododendron brachycarpum via Reactive Oxygen Species (ROS) Regulation vol.13, pp.4, 2012, https://doi.org/10.15810/jic.2017.13.4.002
- In vitro and in silico approaches to appraise Polygonum maritimum L. as a source of innovative products with anti-ageing potential vol.111, pp.None, 2012, https://doi.org/10.1016/j.indcrop.2017.10.046
- Network Pharmacology and Reverse Molecular Docking-Based Prediction of the Molecular Targets and Pathways for Avicularin Against Cancer vol.22, pp.1, 2019, https://doi.org/10.2174/1386207322666190206163409
- Avicularin ameliorates human hepatocellular carcinoma via the regulation of NF-κB/COX-2/PPAR-γ activities vol.19, pp.6, 2012, https://doi.org/10.3892/mmr.2019.10198
- Bilberry ( Vaccinium myrtillus L.) Extracts Comparative Analysis Regarding Their Phytonutrient Profiles, Antioxidant Capacity along with the In Vivo Rescue Effects Tested on a Drosophila melanogaste vol.9, pp.11, 2020, https://doi.org/10.3390/antiox9111067
- LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/7588711
- Stevia Genus: Phytochemistry and Biological Activities Update vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092733