DOI QR코드

DOI QR Code

High-Resolution X-Ray Photoelectron Spectroscopy Study of a Sb2Te3 Thin Film with the Polycrystalline Phase

고해상도 엑스선 광전자 분광법을 이용한 다결정구조의 안티몬-테레니움 박막 연구

  • Lee, Y.M. (Department of Materials Engineering, Chungnam University, Brain Korea 21 Project (BK21)) ;
  • Kim, K. (AE Group, Samsung Advanced Institute of Technology, Samsung Electornics Co. Ltd.) ;
  • Shin, H.J. (Beamline Division, Pohang Accelerator Laboratory, POSTECH) ;
  • Jung, M.C. (Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University) ;
  • Qi, Y. (Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University)
  • 이영미 (충남 대학교 재료공학부 BK21) ;
  • 김기홍 (삼성전자 삼성종합기술원 AE 그룹) ;
  • 신현준 (포스텍 포항가속기연구소 빔라인부) ;
  • 정민철 (오키나와 과학기술대학원 대학 에너지 물질 및 표면 과학 그룹) ;
  • 취야빙 (오키나와 과학기술대학원 대학 에너지 물질 및 표면 과학 그룹)
  • Received : 2012.09.28
  • Accepted : 2012.11.22
  • Published : 2012.11.30

Abstract

We investigated chemical states of a $Sb_2Te_3$ thin film with the polycrystalline phase by using high-resolution x-ray photoelectron spectroscopy with synchrotron radiation. The $Sb_2Te_3$ thin film was formed by sputtering. The rhombohedral phase was confirmed by x-ray diffraction. To remove the surface oxide, we performed $Ne^+$ ion sputtering for 1 hour with the beam energy of 1 kV and post-annealing at $100^{\circ}C$ for 5 min in ultra-high vacuum. We obtained the Te and Sb 4d core-levels spectra with the peaks at the binding energies of 40.4 and 33.0 eV, respectively. The full-width of half maximum of both the Te and Sb $4d_{5/2}$ core-levels is 0.9 eV. The Te and Sb core-levels only show a single chemical state, and we also confirmed the stoichiometry of approximately 2 : 3.

스퍼터를 이용하여 실리콘 기판위에 제작된 안티몬-테레니움 다결정 박막을 방사광을 이용한 고해상도 엑스선 광전자 분광법 실험을 수행하여 화학적 상태를 분석하였다. 엑스선 회절 실험을 통해 제작된 안티몬-테레니움 박막은 롬보헤드럴 구조를 가지는 다결정임을 확인하였다. 엑스선 광전자분광법을 수행하기 위하여 표면의 산화막 제거를 위해 저에너지 네온 이온 스퍼터링을 빔에너지 1 kV로 1 시간동안 수행하였고, 이를 통해 표면 산화막이 완벽히 제거됨을 확인하였다. 또한, 스퍼처링에 의하여 표면 비정질화된 상태를 결정화 상태로 만들기 위해 상변화온도인 $100^{\circ}C$에서 5 분간 초고진공상태에서 열처리를 수행하였다. 이후 획득되어진 테레니움 4d와 안티몬 4d 속전자레벨 분석에서 각각의 묶음에너지가 40.4 그리고 33.0 전자볼트임을 확인할 수 있었으며, 각각은 단일한 화학적 상태를 나타내고 얻어진 피크의 밀도분석을 통해 화학적조성비가 2 : 3임을 확인하였다.

Keywords

References

  1. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys. 69, 2849 (1991). https://doi.org/10.1063/1.348620
  2. A. V. Kolobov, P. Fons, A. I. F Renkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, Nat. Mat. 3, 703 (2004). https://doi.org/10.1038/nmat1215
  3. Y. Yin, H. Sone, and S. Hosaka, J. Appl. Phys. 102, 064503 (2007). https://doi.org/10.1063/1.2778737
  4. M. S. Kim, S. H. Cho, S. K. Hong, J. S. Roh, and D. J. Choi, Ceramics International 34, 1043 (2008). https://doi.org/10.1016/j.ceramint.2007.09.078
  5. M.-C. Jung, H. J. Shin, K. Kim, J. S. Noh, and J. Chung, Appl. Phys. Lett. 89, 043503 (2006). https://doi.org/10.1063/1.2236216
  6. M.-C. Jung, H. J. Shin, K. Kim, J. S. Noh, and J. Chung, Appl. Phys. Lett. 89, 043503 (2006). https://doi.org/10.1063/1.2236216
  7. M.-C. Jung, K. Kim, Y. M. Lee, J.-H. Eom, J. Im, Y.-G. Yoon, J. Ihm, S. A. Song, H. S. Jeong, and H.-J. Shin, J. Appl. Phys. 104, 074911 (2008). https://doi.org/10.1063/1.2990766
  8. M.-C. Jung, Y. M. Lee, K. Kim, J. C. Park, S. A. Song, H.-D. Kim, H. S. Jeong, and H. J. Shin, Curr. Appl. Phys. 10, 1336 (2010). https://doi.org/10.1016/j.cap.2010.04.004
  9. Y. M. Lee, Y. Park, C.-W. Sun, J. Y. Lee, H. J. Shin, Y. T. Kim, and M.-C. Jung, Thin Solid Films 518, 4442 (2010). https://doi.org/10.1016/j.tsf.2010.02.013
  10. K.-H. Park, S.-K. Cho, and T.-U. Nahm, J. Korean Vac. Soc. 17, 183 (2008). https://doi.org/10.5757/JKVS.2008.17.3.183
  11. S.-P Kim, S.-J Kim, D.-Y. Kim, Y.-C. Chung, and K.-R. Lee, J. Korean Vac. Soc. 17, 81 (2008). https://doi.org/10.5757/JKVS.2008.17.2.081
  12. J. H. Oh, S. W. Ryu, B. J. Choi, S. Choi, C. S. Hwang, H. J. Kim, S. Y. Hwang, Y. J. Kim, H. C. Park, H. Y. Chang, and S. K. Hong, J. Korean Phys. Soc. 49, 1173 (2006).
  13. M.-Y Kim, K.-W Park, and T.-S. Oh, J. Korean Phys. Soc. 53, 266 (2006).
  14. M. K. Lee and H. J. Shin, Rev. Sci. Instrum. 72, 2065 (2001).
  15. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, MN, 1995), p. 93.
  16. X. Lia, F. Rao, Z. Song, K. Ren, W. Liu, and Z. Sun, Appl. Sur. Sci. 257, 4566 (2011). https://doi.org/10.1016/j.apsusc.2010.12.017
  17. B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, Phys. Rev. B 84, 165208 (2011). https://doi.org/10.1103/PhysRevB.84.165208
  18. A. Klein, H. Dieker, B. Spaeth, P. Fons, A. Kolobov, C. Steimer, and M. Wuttig, Phys. Rev. Lett. 100, 016402 (2008). https://doi.org/10.1103/PhysRevLett.100.016402
  19. J.-J. Kim, K. Kobayashi, E. Ikenaga, M. Kobata, S. Ueda, T. Matsunaga, K. Kifune, R. Kojima, and N. Yamada, Phys. Rev. B 76, 115124 (2007). https://doi.org/10.1103/PhysRevB.76.115124
  20. S. Doniach and M. Sunjic, J. Phys. C 3, 285 (1970). https://doi.org/10.1088/0022-3719/3/2/010
  21. D. A. Shirley, Phys. Rev. B 5, 4709 (1972). https://doi.org/10.1103/PhysRevB.5.4709
  22. D. Briggs and M. P. Seah, Auger and X-ray photoelectron spectroscopy practical surface analysis Vol. 1, 1st ed. (Wiley, NewYork, 1990).

Cited by

  1. Formation of Threshold Switching Chalcogenide for Phase Change Switch Applications vol.23, pp.1, 2014, https://doi.org/10.5757/ASCT.2014.23.1.34