DOI QR코드

DOI QR Code

Default Bayesian hypothesis testing for the scale parameters in nonregular Pareto distributions

  • Kang, Sang Gil (Department of Computer and Data Information, Sangji University)
  • Received : 2012.10.22
  • Accepted : 2012.11.18
  • Published : 2012.11.30

Abstract

This article deals with the problem of testing the equality of the scale parameters in nonregular Pareto distributions.We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be de ned up to a multiplicative constant. So we propose the default Bayesia hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and a real data example are provided.

Keywords

References

  1. Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto populations. Journal of Econometrics, 21, 287-306. https://doi.org/10.1016/0304-4076(83)90047-7
  2. Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84, 1079-1084. https://doi.org/10.1080/01621459.1989.10478875
  3. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  4. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo et al., Oxford University Press, Oxford, 35-60.
  5. Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.1080/01621459.1996.10476668
  6. Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankya B, 60, 1-18.
  7. Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 38, edited by P. Lahiri, Beachwood, Ohio, 135-207.
  8. Cho, J. S. (2010). Bayesian multiple comparisons in Freund's bivariate exponential populations with type I censored data. Journal of the Korean Data & Information Science Society, 21, 569-574.
  9. Dyer, D. (1981). Structural probability bounds for the strong Pareto law. Canadian Journal of Statistics, 9, 71-77. https://doi.org/10.2307/3315297
  10. Elfessi, A. and Jin, C. (1996). On robust estimation of the common scale parameter of several Pareto distributions. Statistics & Probability Letters, 29, 345-352. https://doi.org/10.1016/0167-7152(95)00190-5
  11. Fernandez, A. J. (2008). Highest posterior density estimation form multiply censored Pareto data. Statistical Papers, 49, 333-341.
  12. Geisser, S. (1984). Prediction Pareto and exponential observables. Canadian Journal of Statistics, 12, 143-152. https://doi.org/10.2307/3315178
  13. Geisser, S. (1985). Interval prediction for Pareto and exponential observables. Journal of Econometrics, 29, 173-185. https://doi.org/10.1016/0304-4076(85)90038-7
  14. Kang, S. G. (2010). Noninformative priors for the common scale parameter in Pareto distributions. Journal of the Korean Data & Information Science Society, 21, 335-343.
  15. Kang, S. G., Kim, D. H. and Lee, W. D. (2010). Default Bayesian testing for normal mean with known coecient of variation. Journal of the Korean Data & Information Science Society, 21, 297-308.
  16. Kang, S. G., Kim, D. H. and Lee, W. D. (2011). Default Bayesian testing for the bivariate normal correlation coecient. Journal of the Korean Data & Information Science Society, 22, 1007-1016.
  17. Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
  18. Ko, J. H. and Kim, Y. H. (1999). Bayesian prediction inference for censored Pareto model. Journal of the Korean Data & Information Science Society, 10, 147-154.
  19. Lwin, T. (1972). Estimation of the tail of the Paretian law. Scandinavian Actuarial Journal, 55, 170-178.
  20. Nigm, A. M. and Hamdy, H. L. (1987). Bayesian prediction bounds for the Pareto lifetime model. Communications in Statistics: Theory and Methods, 16, 1761-1772. https://doi.org/10.1080/03610928708829470
  21. O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
  22. O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
  23. Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
  24. Tiwari, R. C., Yang, Y. and Zalkikar, J. N. (1996). Bayes estimation for the Pareto failure-model using gibbs sampling. IEEE Transactions on Reliability, 45, 471-476. https://doi.org/10.1109/24.537018