DOI QR코드

DOI QR Code

이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가

Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys

  • 이성희 (국립목포대학교 신소재공학과) ;
  • 강창석 (한국생산기술연구원)
  • Lee, Seong-Hee (Department Of Advanced Materials Science And Engineering, Mokpo National University) ;
  • Kang, Chang-Seog (Korea Institute Of Industrial Technology (Kitech), Automotive Components Center)
  • 투고 : 2011.08.08
  • 발행 : 2011.11.25

초록

Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

키워드

과제정보

연구 과제 주관 기관 : 전남과학기술진흥센터

참고문헌

  1. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, Scr. Mater. 39, 1221 (1998). https://doi.org/10.1016/S1359-6462(98)00302-9
  2. H. W. Kim, S. H. Jin, and S. B. Kang, J. Kor. Inst. Met. Mater. 39, 546 (2001).
  3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta. Mater. 47, 579 (1999). https://doi.org/10.1016/S1359-6454(98)00365-6
  4. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Scrip. Mater. 40, 795 (1999). https://doi.org/10.1016/S1359-6462(99)00015-9
  5. S. H. Lee, N. Tsuji, H. Utsunomiya, T. Sakai, and Y. Saito, Scrip. Mater. 46, 281 (2002). https://doi.org/10.1016/S1359-6462(01)01239-8
  6. S. H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
  7. S. H. Lee, J. Cho, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 15, 240 (2005). https://doi.org/10.3740/MRSK.2005.15.4.240
  8. S. H. Lee, J. Cho, C. H. Lee, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 15, 555 (2005). https://doi.org/10.3740/MRSK.2005.15.9.555
  9. S. H. Lee, S. Z. Han, and C. Y. Lim, Kor. J. Mater. Res. 16, 592 (2006). https://doi.org/10.3740/MRSK.2006.16.9.592
  10. H. R. Song, Y. S. Kim, and W. J. Nam, Met. Mater. Int. 12, 7 (2006). https://doi.org/10.1007/BF03027516
  11. C. Y. Lim, S. Z. Han, and S. H. Lee, Met. Mater. Int. 12, 225 (2006). https://doi.org/10.1007/BF03027535
  12. N. Takata, S. H. Lee, and N. Tsuji, Materials Letters 63, 1757 (2009). https://doi.org/10.1016/j.matlet.2009.05.021
  13. S. H. Lee, J. Kor. Inst. Met. & Mater. 43, 786 (2001).
  14. Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, and M. Goto. Met. Mater. Int. 14, 171 (2008). https://doi.org/10.3365/met.mat.2008.04.171
  15. M. Eizadjou, A. K. Talachi, H. D. Manesh, H. S. Shahabi, and K. Janghorban, Composite Sci. Tech. 68, 2003 (2008). https://doi.org/10.1016/j.compscitech.2008.02.029
  16. A. Mozaffari, H. D. Manesh, and K. Janghorban, J. Alloys And Compounds 489, 103 (2010). https://doi.org/10.1016/j.jallcom.2009.09.022