DOI QR코드

DOI QR Code

Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-Hydrolysis and Response Surface Methodology

산가수분해법과 반응표면분석법을 이용한 해조류 청각으로부터 레불린산의 생산

  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University) ;
  • Park, Don-Hee (School of Biological Sciences and Technology, Chonnam National Unversity)
  • 정귀택 (부경대학교 생물공학과) ;
  • 박돈희 (전남대학교 생명과학기술학부)
  • Received : 2011.07.09
  • Accepted : 2011.08.16
  • Published : 2011.08.30

Abstract

This work is focused on the possibility of marine biomass Codium fragile as renewable resources for production of levulinic acid. In an effort to optimize the reaction conditions of levulinic acid production from Codium fragile, response surface methodology was applied. A total of 18 individual experiments were designed to investigate the effect of reaction temperature, catalyst amount, and reaction time. As a result, 4.26 g/L levulinic acid from Codium fragile was produced in the condition of $160.7^{\circ}C$ of reaction temperature, 3.9% of sulfuric acid, and 39.1 min of reaction time. This result will provide the useful information for chemical production from marine resource.

Keywords

Acknowledgement

Supported by : 부경대학교

References

  1. Hayes, D. J., S. Fitzpatrick, M. H. B. Hayes, and J. R. H. Ross (2006) The biofine process - Production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. pp. 139-164. In: B. Kamm, P. R. Gruber, M. Kamm (eds.). Biorefineries - Industrial Processes and Products. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  2. Faaij, A. P. C. (2008) Developments in international bioenergy markets and trade. Biomass and Bioenergy 32: 657-659. https://doi.org/10.1016/j.biombioe.2008.02.008
  3. Demibras, A. (2007) Progress and recent trends in biofuels. Progress in Energy Combustion Science 33: 1-18. https://doi.org/10.1016/j.pecs.2006.06.001
  4. Jeong, G. T., J. H. Park, S.,H. Park, and D. H. Park (2009) Performance of pilot-scale biodiesel production system. KSBB Journal 24: 89-95.
  5. Lee, S. J., S. Go, G. T. Jeong, and S. K. Kim (2011) Oil production from five marine microalgae for the production of biodiesel. Biotechnology and Bioprocess Engineering 16: 561-566. https://doi.org/10.1007/s12257-010-0360-0
  6. Han, J. G., S. H. Oh, W. Y. Choi, K. J. Woong, H. B. Seo, K. H. Jeong, D. H. Kang, and H. Y. Lee (2010) Enhancement of saccharification yield of Ulva pertusa kjellman for ethanol production through high temperature liquefaction process. KSBB Journal 25: 357-362.
  7. Lee, S. B., S. J. Cho, S. Y. Lee, K. H. Paek, J. A. Kim, and J. H. Chang (2009) Present status and prospects of marine chemical bioindustries. KSBB Journal 24: 495-507.
  8. Jeong, G. T. and D. H. Park (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Applied Biochemistry and Biotechnology 161: 41-52. https://doi.org/10.1007/s12010-009-8795-5
  9. Yeon, J. H., H. B. Seo, S. H. Oh, W. S. Choi, D. H. Kang, H. Y. Lee, and K. H. Jung (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB Journal 25: 283-288.
  10. Lee, S. M., I. S. Choi, S. K. Kim, and J. H. Lee (2009) Production of bio-ethanol from brown algae by enzymic hydrolysis. KSBB Journal 24: 483-488.
  11. Park, C. S. and C. H. Sohn (1992) Effects of light and temperature on morphogenesis of Codium fragile (Suringer) Harit in laboratory culture. The Korean Journal of Phycology 7: 213-223.
  12. Lee, J. B., Y. Ohta, K. Hayashi, and T. Hayashi (2010) Immunostimulating effects of a sulfated galactan from Codium fragile. Carbohydrate Research 345: 1452-1454. https://doi.org/10.1016/j.carres.2010.02.026
  13. Ciancia, M., I. Quintana, M. I. Vizcargüénaga, L. Kasulin, A. de Dios, J. M. Estevez, and A. S. Cerezo (2007) Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. International Journal of Biological Macromolecules 41: 641-649. https://doi.org/10.1016/j.ijbiomac.2007.08.007
  14. Rogers, D. J., K. M. Jurd, G. Blunden, S. Paoletti, and F. Zanetti (1990) Anticoagulant activity of a proteoglycan in extracts of Codium fragile ssp. atlanticum. Journal of Applied Phycology 2: 357-361. https://doi.org/10.1007/BF02180926
  15. Ohta, Y., J. B. Lee, K. Hayashi, and T. Hayashi (2009) Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biological & Pharmaceutical Bulletin 32: 892-898. https://doi.org/10.1248/bpb.32.892
  16. Cho, D. M., D. S. Kim, D. S. Lee, H. R. Kim, and J. H. Pyeun (1995) Trace components and functional saccharides in seaweed - Changes in proximate composition and trace elements according to the harvest season and places. Bull. Korean Fish. Soc. 28: 49-59.
  17. Love J. and E. Percival (1964) The polysaccharides of the green seaweed Codium fragile. Part II. The water-soluble sulphated polysaccharides. J. Chem. Soc. 3338-3345. https://doi.org/10.1039/jr9640003338
  18. Estevez, J. M., P. V. Fernández, L. Kasulin, P. Dupree, and M. Ciancia (2009) Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 19: 212-228. https://doi.org/10.1093/glycob/cwn101
  19. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas. http:// www.osti.gov/bridge.(2004).
  20. Cha, J. Y. and M. A. Hanna (2002) Levulinic acid production based on extrusion and pressurized batch reaction. Industrial Crops and Products 16: 109-118. https://doi.org/10.1016/S0926-6690(02)00033-X
  21. Jeong, G. T., H. S. Yang, S. H. Park, and D. H. Park (2007) Optimization of biodiesel production from rapeseed oil using response surface methodology. Korean J. Biotechnol. Bioeng. 22: 222-227.
  22. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2008) "Determination of structural carbohydrates and lignin" in Biomass Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42618.
  23. Lee, I. B., K. Hayashi, M. Maeda, and T. Hayashi (2004) Antiherpetic activity of sulfated polysaccharide from green algae. Planta Med. 70: 813-817. https://doi.org/10.1055/s-2004-827228
  24. Matsubara K., Y. Matsuura, A. Bacic, M. Liao, K. Hori, and K. Miyazawa (2001) Anticoagulant properties of a sulfated galactan preparation from a marine green algae, Codium cylindricum. Int. J. Biol. Macromol. 28: 395-399. https://doi.org/10.1016/S0141-8130(01)00137-4
  25. Bilan, M. I., E. V. Vinogradova, A. S. Shashkov, and A. I. Usov (2006) Isolation and preliminary characterization of a highly pyruvylated galactan from Codium yezoense (Bryopsidales, Chlorophyta). Bot. Mar. 49: 259-262.
  26. Love, J., and E. Percival (1964) The polysaccharides of the green seaweed Codium fragile, Part III. A $\beta$-1,4 linked mannan. J. Chem. Soc. 3345-3350. https://doi.org/10.1039/jr9640003345

Cited by

  1. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural vol.38, pp.2, 2015, https://doi.org/10.1007/s00449-014-1259-5
  2. Optimization of lipid extraction from marine green macro-algae as biofuel resources vol.32, pp.12, 2015, https://doi.org/10.1007/s11814-015-0083-1
  3. Production of Chemical Intermediate Furfural from Renewable Biomass Miscanthus Straw vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.492
  4. Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction vol.74, 2015, https://doi.org/10.1016/j.biombioe.2015.01.014
  5. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa vol.39, pp.7, 2016, https://doi.org/10.1007/s00449-016-1593-x
  6. Ethanol Production from Red, Brown and Green Seaweeds and Biosorption of Heavy Metals by Waste Seaweed Slurry from Ethanol Production vol.29, pp.6, 2014, https://doi.org/10.7841/ksbbj.2014.29.6.414
  7. Optimization and Evaluation of Sugars and Chemicals Production from Green Macro-algae Enteromorpha intestinalis vol.9, pp.4, 2016, https://doi.org/10.1007/s12155-016-9759-6
  8. Bioethanol Production from Seaweed Gelidium amansii for Separated Hydrolysis and Fermentation (SHF) vol.28, pp.5, 2013, https://doi.org/10.7841/ksbbj.2013.28.5.282
  9. Effect of Pretreatment Method on Lipid Extraction from Enteromorpha intestinalis vol.29, pp.1, 2014, https://doi.org/10.7841/ksbbj.2014.29.1.22
  10. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis vol.161, 2014, https://doi.org/10.1016/j.biortech.2014.03.078
  11. Optimization of the production of platform chemicals and sugars from the red macroalga, Kappaphycus alvarezii vol.13, 2016, https://doi.org/10.1016/j.algal.2015.12.013
  12. Production of Levulinic Acid from Chitosan by Acidic-Hydrothermal Reaction vol.52, pp.3, 2014, https://doi.org/10.9713/kcer.2014.52.3.355
  13. Production of Reducing Sugar from Macroalgae Saccharina japonica Using Ionic Liquid Catalyst vol.51, pp.1, 2013, https://doi.org/10.9713/kcer.2013.51.1.106
  14. Effect of Reaction Factors on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.478
  15. Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis vol.13, 2016, https://doi.org/10.1016/j.algal.2015.12.011
  16. 거대 갈조류 모자반으로부터 환원당과 레불린산의 생산 vol.42, pp.2, 2011, https://doi.org/10.4014/kjmb.1404.04005
  17. 해조류 Pulp 분리방법 및 응용연구 vol.32, pp.4, 2011, https://doi.org/10.12925/jkocs.2015.32.4.685
  18. Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산 vol.58, pp.2, 2011, https://doi.org/10.9713/kcer.2020.58.2.293
  19. Levulinic Acid Production from Macroalgae: Production and Promising Potential in Industry vol.13, pp.24, 2011, https://doi.org/10.3390/su132413919