Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.4.341

Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-Hydrolysis and Response Surface Methodology  

Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
Park, Don-Hee (School of Biological Sciences and Technology, Chonnam National Unversity)
Publication Information
KSBB Journal / v.26, no.4, 2011 , pp. 341-346 More about this Journal
Abstract
This work is focused on the possibility of marine biomass Codium fragile as renewable resources for production of levulinic acid. In an effort to optimize the reaction conditions of levulinic acid production from Codium fragile, response surface methodology was applied. A total of 18 individual experiments were designed to investigate the effect of reaction temperature, catalyst amount, and reaction time. As a result, 4.26 g/L levulinic acid from Codium fragile was produced in the condition of $160.7^{\circ}C$ of reaction temperature, 3.9% of sulfuric acid, and 39.1 min of reaction time. This result will provide the useful information for chemical production from marine resource.
Keywords
Codium fragile; levulinic acid; acid-hydrolysis; marine algae; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Estevez, J. M., P. V. Fernández, L. Kasulin, P. Dupree, and M. Ciancia (2009) Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 19: 212-228.   DOI
2 The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas. http:// www.osti.gov/bridge.(2004).
3 Cha, J. Y. and M. A. Hanna (2002) Levulinic acid production based on extrusion and pressurized batch reaction. Industrial Crops and Products 16: 109-118.   DOI   ScienceOn
4 Jeong, G. T., H. S. Yang, S. H. Park, and D. H. Park (2007) Optimization of biodiesel production from rapeseed oil using response surface methodology. Korean J. Biotechnol. Bioeng. 22: 222-227.
5 Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2008) "Determination of structural carbohydrates and lignin" in Biomass Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42618.
6 Lee, I. B., K. Hayashi, M. Maeda, and T. Hayashi (2004) Antiherpetic activity of sulfated polysaccharide from green algae. Planta Med. 70: 813-817.   DOI   ScienceOn
7 Matsubara K., Y. Matsuura, A. Bacic, M. Liao, K. Hori, and K. Miyazawa (2001) Anticoagulant properties of a sulfated galactan preparation from a marine green algae, Codium cylindricum. Int. J. Biol. Macromol. 28: 395-399.   DOI   ScienceOn
8 Bilan, M. I., E. V. Vinogradova, A. S. Shashkov, and A. I. Usov (2006) Isolation and preliminary characterization of a highly pyruvylated galactan from Codium yezoense (Bryopsidales, Chlorophyta). Bot. Mar. 49: 259-262.
9 Love, J., and E. Percival (1964) The polysaccharides of the green seaweed Codium fragile, Part III. A $\beta$-1,4 linked mannan. J. Chem. Soc. 3345-3350.   DOI
10 Lee, S. B., S. J. Cho, S. Y. Lee, K. H. Paek, J. A. Kim, and J. H. Chang (2009) Present status and prospects of marine chemical bioindustries. KSBB Journal 24: 495-507.
11 Jeong, G. T. and D. H. Park (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Applied Biochemistry and Biotechnology 161: 41-52.   DOI   ScienceOn
12 Yeon, J. H., H. B. Seo, S. H. Oh, W. S. Choi, D. H. Kang, H. Y. Lee, and K. H. Jung (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB Journal 25: 283-288.
13 Lee, S. M., I. S. Choi, S. K. Kim, and J. H. Lee (2009) Production of bio-ethanol from brown algae by enzymic hydrolysis. KSBB Journal 24: 483-488.
14 Park, C. S. and C. H. Sohn (1992) Effects of light and temperature on morphogenesis of Codium fragile (Suringer) Harit in laboratory culture. The Korean Journal of Phycology 7: 213-223.
15 Lee, J. B., Y. Ohta, K. Hayashi, and T. Hayashi (2010) Immunostimulating effects of a sulfated galactan from Codium fragile. Carbohydrate Research 345: 1452-1454.   DOI   ScienceOn
16 Ciancia, M., I. Quintana, M. I. Vizcargüénaga, L. Kasulin, A. de Dios, J. M. Estevez, and A. S. Cerezo (2007) Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. International Journal of Biological Macromolecules 41: 641-649.   DOI   ScienceOn
17 Rogers, D. J., K. M. Jurd, G. Blunden, S. Paoletti, and F. Zanetti (1990) Anticoagulant activity of a proteoglycan in extracts of Codium fragile ssp. atlanticum. Journal of Applied Phycology 2: 357-361.   DOI   ScienceOn
18 Ohta, Y., J. B. Lee, K. Hayashi, and T. Hayashi (2009) Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biological & Pharmaceutical Bulletin 32: 892-898.   DOI   ScienceOn
19 Love J. and E. Percival (1964) The polysaccharides of the green seaweed Codium fragile. Part II. The water-soluble sulphated polysaccharides. J. Chem. Soc. 3338-3345.   DOI
20 Cho, D. M., D. S. Kim, D. S. Lee, H. R. Kim, and J. H. Pyeun (1995) Trace components and functional saccharides in seaweed - Changes in proximate composition and trace elements according to the harvest season and places. Bull. Korean Fish. Soc. 28: 49-59.
21 Hayes, D. J., S. Fitzpatrick, M. H. B. Hayes, and J. R. H. Ross (2006) The biofine process - Production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. pp. 139-164. In: B. Kamm, P. R. Gruber, M. Kamm (eds.). Biorefineries - Industrial Processes and Products. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
22 Faaij, A. P. C. (2008) Developments in international bioenergy markets and trade. Biomass and Bioenergy 32: 657-659.   DOI   ScienceOn
23 Demibras, A. (2007) Progress and recent trends in biofuels. Progress in Energy Combustion Science 33: 1-18.   DOI   ScienceOn
24 Han, J. G., S. H. Oh, W. Y. Choi, K. J. Woong, H. B. Seo, K. H. Jeong, D. H. Kang, and H. Y. Lee (2010) Enhancement of saccharification yield of Ulva pertusa kjellman for ethanol production through high temperature liquefaction process. KSBB Journal 25: 357-362.
25 Jeong, G. T., J. H. Park, S.,H. Park, and D. H. Park (2009) Performance of pilot-scale biodiesel production system. KSBB Journal 24: 89-95.
26 Lee, S. J., S. Go, G. T. Jeong, and S. K. Kim (2011) Oil production from five marine microalgae for the production of biodiesel. Biotechnology and Bioprocess Engineering 16: 561-566.   DOI