DOI QR코드

DOI QR Code

Bioethanol Production from Seaweed Ulva pertusa for Environmental Application

해조류 구멍갈파래 (Ulva pertusa)의 친환경적 이용을 위한 바이오에탄올의 생산

  • Kim, Jong-Deog (Research center on Anti-Obesity and Health Care, Chonnam National University) ;
  • Yoon, Yang-Ho (Marine Future Resources Development Agency, Chonnam National University) ;
  • Shin, Tai-Sun (Marine Future Resources Development Agency, Chonnam National University) ;
  • Kim, Min-Yong (Marine Future Resources Development Agency, Chonnam National University) ;
  • Byun, Hyun-Soo (Marine Future Resources Development Agency, Chonnam National University) ;
  • Oh, Seok-Jin (Department of Oceanography, Pukyong National University) ;
  • Seo, Hyo-Jin (Marine Future Resources Development Agency, Chonnam National University)
  • 김종덕 (전남대학교 항비만.건강연구소) ;
  • 윤양호 (전남대학교 해양미래자원개발사업단) ;
  • 신태선 (전남대학교 해양미래자원개발사업단) ;
  • 김민용 (전남대학교 해양미래자원개발사업단) ;
  • 변헌수 (전남대학교 해양미래자원개발사업단) ;
  • 오석진 (부경대학교 해양학과) ;
  • 서효진 (전남대학교 해양미래자원개발사업단)
  • Received : 2011.07.07
  • Accepted : 2011.08.17
  • Published : 2011.08.30

Abstract

Ulva pertusa is one of the worst pollutant like a waste vinyl after agriculture and caused bad smell at seashore in Jejudo and south area of korean peninsular. For favorable environmental utilization of Ulva pertusa, it could be applied for ethanol production with its acid hydrolysate. The components of hydrolysate included fermentable sugar of glucose, xylose, mannose, galactose, and higher amounts of unfermentable rhamnose. Fermentable sugars were converted to ethanol with S. cerevisiae, also xylose to ethanol with P. stipitis, their maximun ethanol production at optimum conditions were 462 ${\mu}g$/mL and 475 ${\mu}g$/mL, respectively. While, rhamnose cannot be changed to ethanol with S. cerevisiae or P. stipitis, alone. Combination of S. cerevisiae and P. stipitis can convert rhamnose to ethanol, because P.stipitis degradaded rhamnose to pyruvate, and then S. cerevisiae convert to ethanol, at optimum conditions, ethanol reached to 782 ${\mu}g$/mL (30.24%) that is higher than that of 2 strain alone from 500 mg of dried Ulva pertusa contained 2586.45 ${\mu}g$/mL of reduced sugars. Ulva pertusa can be utilized for renewal energy insted of environmenatal enemy.

Keywords

References

  1. Toivola, A., D. Yarrow, E. V. Bosch, J. P. Dijken, and A. A. Scheffersi (1984) Alcoholic fermentation of D-Xylose by yeasts. Appl. Environ. Microbiol. 47: 1221-1223.
  2. Laplace, J. M., J. P. Delgenes, R. Moletta, and J. M. Navarro (1991) Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor. Appl. Microbiol Biotechnol. 36: 158-162. https://doi.org/10.1007/BF00164412
  3. Park, J. Y., R. Shiroma, M. Imran, Y. Zhang, M. Ike, Y. A. Sanoh, A. Ida, M. Kondo, and K. Tokuyasu (2010) A novel lime pretreatment for subsequent bioethanol production from rice straw. Calcium capturing by carbonation (CaCCO) process. Bioresource Technology 101: 6805-6811. https://doi.org/10.1016/j.biortech.2010.03.098
  4. Antonius J. A. van Maris, A. Derek, E. Bellissimi, J. Brink, M. Kuyper, M. A. H. Luttik, H. W. Wisselink, W. A. Scheffers, J. P. van Dijken, and J. T. Pron (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90: 391-418. https://doi.org/10.1007/s10482-006-9085-7
  5. Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology 19: 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
  6. Slininger, P. J., R. J. Bothast, J. E. Vancauwenberge, and C. P. Kurtzman (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol. Bioeng. 24: 371-384. https://doi.org/10.1002/bit.260240210
  7. Gong, C. S., L. F. Chen, M. C. Flickinger, L. C. Chiang, and G. T. Tsao (1981) Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430-436.
  8. Gong, C. S., L. D. McCracken, and G. T. Tsao (1981) Direct fermentation of D-xylose to ethanol by a xylose-fermentating yeast mutant, Candida sp Xf217. Biotechnol. Lett. 3: 245-250. https://doi.org/10.1007/BF00154652
  9. Preez, J. C., B. van Driessel, and B. A. Prior (1989) D-Xylose fermentation by Candida shehatae and Pichia stipitis at low dissolved oxygen levels in fed-batch cultures. Biotechnol. Lett. 2: 131-136.
  10. Michael, V., R. Kratzer, B. Nidetzky, and L. Brecker (2011) Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Organic & Biomolecular Chemistry, www.rsc.org/obc
  11. Regina, K. and B. Nidetzky (2007) Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic a-hydroxy esters and improvement of its efficiency by protein engineering. Chem. Commun. 22: 1047-1049.
  12. Savitree, L., T. Sumpradit, V. Kitpreechavanich, M. Tuntirungkij, T. Seki, and T. Yoshida (2000) Effect of Acetic Acid on Growth and Ethanol Fermentation of Xylose Fermenting Yeast and Saccharomyces cerevisiae. Kasetsart J. (Nat. Sci.) 34 : 64-73.
  13. Masahiko, T., K. Kubota, N. Matsushita, and K. Togashi (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97: 311-317. https://doi.org/10.1007/s00114-009-0643-5
  14. Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering 3: 236-249. https://doi.org/10.1006/mben.2000.0191
  15. Bao, X., D. Gao, Y. Qu, Z. Wang, M. Walfridssion, and B. H. Hagerbal (1997) Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Chin. J. Biotechnol. 13: 225-231.
  16. Linko, Y. Y., H. Kautola, S. Uotila, and P. Linko (1986) Alcoholic fermentation of D-xylose by immobilized Pichia stipitis yeast. Biotechnol. Lett. 8: 47-52. https://doi.org/10.1007/BF01044401
  17. Almeida, R. M., T. Modig, A. Rer1, G. Lid, and M. F. Gorwa- Grauslund (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnology for Biofuels 1: 12-18. https://doi.org/10.1186/1754-6834-1-12
  18. Metzger, M. H. and C. P. Hollenberg (1995) Amino acid substitutions in the yeast Pichia slipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Eur. J. Biochem. 228: 50-54. https://doi.org/10.1111/j.1432-1033.1995.tb20227.x
  19. Barnett, J. A., R. W. Payne, and D. Yarrow (1990) Yeasts; Characteristics and identification. Cambridge University Press, Cambridge, UK. ISBN 0-521-35056-5.
  20. Heredia, C. F., A. Sols, and G. DelaFuente (1968) Specificity of the constitutive hexose transport in yeast. Eur. J. Biochem. 5: 321-329. https://doi.org/10.1111/j.1432-1033.1968.tb00373.x
  21. Bakker, B. M., C. Bro, P. Kotter, M. A. Luttik, J. P. Dijken, and J. T. Pronk (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737. https://doi.org/10.1128/JB.182.17.4730-4737.2000
  22. Bakker, B. M., K. M. Overkamp, A. J. Maris, P. Kotter, M. A. Luttik, J. P. Dijken, and J. T. Pronk (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25: 15-37. https://doi.org/10.1111/j.1574-6976.2001.tb00570.x
  23. Twerdochlib, A. L., F. O. Pedrosa, S. Funayama, and L. U. Rigo (1994) L-rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus. Can. J. Microbiol. 40: 896-902. https://doi.org/10.1139/m94-144
  24. Koivistoinen, O. M., S. Hilditch, S. P. Voutilainen, H. Boer, M. Penttilä, and P. Richard (2008) Identification in the yeast Pichia stipitis of the first L-rhamnose-1-dehydrogenase gene. FEBS J. 275: 2482-2488. https://doi.org/10.1111/j.1742-4658.2008.06392.x
  25. Seiya, W., S. Piyanart, and K. Makino (2008) Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. FEBS J. 275: 5139-5149. https://doi.org/10.1111/j.1742-4658.2008.06645.x
  26. Seiya, W., M. Saimura, and K. Makino (2008) Eukaryotic and Bacterial Gene Clusters Related to an Alternative Pathway of Nonphosphorylated L-Rhamnose Metabolism. J. Biological Chem. 283: 20372-20382. https://doi.org/10.1074/jbc.M801065200
  27. Michelle, M. C., J. Boonstra, J. Arie, and C. T. Verrips (1996) Kinetic analysis of hexose uptake in Saccharomyces cerevisiae cultivated in continuous culture. Biochimica et Biophysics Acta 1277: 209-216. https://doi.org/10.1016/S0005-2728(96)00098-9

Cited by

  1. Phylogenetic Diversity and Community Analysis of Marine Bacteria Associated with Ulva pertusa vol.26, pp.7, 2016, https://doi.org/10.5352/JLS.2016.26.7.819
  2. Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae vol.28, pp.6, 2013, https://doi.org/10.7841/ksbbj.2013.28.6.366