References
- Toivola, A., D. Yarrow, E. V. Bosch, J. P. Dijken, and A. A. Scheffersi (1984) Alcoholic fermentation of D-Xylose by yeasts. Appl. Environ. Microbiol. 47: 1221-1223.
- Laplace, J. M., J. P. Delgenes, R. Moletta, and J. M. Navarro (1991) Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor. Appl. Microbiol Biotechnol. 36: 158-162. https://doi.org/10.1007/BF00164412
- Park, J. Y., R. Shiroma, M. Imran, Y. Zhang, M. Ike, Y. A. Sanoh, A. Ida, M. Kondo, and K. Tokuyasu (2010) A novel lime pretreatment for subsequent bioethanol production from rice straw. Calcium capturing by carbonation (CaCCO) process. Bioresource Technology 101: 6805-6811. https://doi.org/10.1016/j.biortech.2010.03.098
- Antonius J. A. van Maris, A. Derek, E. Bellissimi, J. Brink, M. Kuyper, M. A. H. Luttik, H. W. Wisselink, W. A. Scheffers, J. P. van Dijken, and J. T. Pron (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90: 391-418. https://doi.org/10.1007/s10482-006-9085-7
- Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology 19: 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
- Slininger, P. J., R. J. Bothast, J. E. Vancauwenberge, and C. P. Kurtzman (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol. Bioeng. 24: 371-384. https://doi.org/10.1002/bit.260240210
- Gong, C. S., L. F. Chen, M. C. Flickinger, L. C. Chiang, and G. T. Tsao (1981) Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430-436.
- Gong, C. S., L. D. McCracken, and G. T. Tsao (1981) Direct fermentation of D-xylose to ethanol by a xylose-fermentating yeast mutant, Candida sp Xf217. Biotechnol. Lett. 3: 245-250. https://doi.org/10.1007/BF00154652
- Preez, J. C., B. van Driessel, and B. A. Prior (1989) D-Xylose fermentation by Candida shehatae and Pichia stipitis at low dissolved oxygen levels in fed-batch cultures. Biotechnol. Lett. 2: 131-136.
- Michael, V., R. Kratzer, B. Nidetzky, and L. Brecker (2011) Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Organic & Biomolecular Chemistry, www.rsc.org/obc
- Regina, K. and B. Nidetzky (2007) Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic a-hydroxy esters and improvement of its efficiency by protein engineering. Chem. Commun. 22: 1047-1049.
- Savitree, L., T. Sumpradit, V. Kitpreechavanich, M. Tuntirungkij, T. Seki, and T. Yoshida (2000) Effect of Acetic Acid on Growth and Ethanol Fermentation of Xylose Fermenting Yeast and Saccharomyces cerevisiae. Kasetsart J. (Nat. Sci.) 34 : 64-73.
- Masahiko, T., K. Kubota, N. Matsushita, and K. Togashi (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97: 311-317. https://doi.org/10.1007/s00114-009-0643-5
- Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering 3: 236-249. https://doi.org/10.1006/mben.2000.0191
- Bao, X., D. Gao, Y. Qu, Z. Wang, M. Walfridssion, and B. H. Hagerbal (1997) Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Chin. J. Biotechnol. 13: 225-231.
- Linko, Y. Y., H. Kautola, S. Uotila, and P. Linko (1986) Alcoholic fermentation of D-xylose by immobilized Pichia stipitis yeast. Biotechnol. Lett. 8: 47-52. https://doi.org/10.1007/BF01044401
- Almeida, R. M., T. Modig, A. Rer1, G. Lid, and M. F. Gorwa- Grauslund (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnology for Biofuels 1: 12-18. https://doi.org/10.1186/1754-6834-1-12
- Metzger, M. H. and C. P. Hollenberg (1995) Amino acid substitutions in the yeast Pichia slipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Eur. J. Biochem. 228: 50-54. https://doi.org/10.1111/j.1432-1033.1995.tb20227.x
- Barnett, J. A., R. W. Payne, and D. Yarrow (1990) Yeasts; Characteristics and identification. Cambridge University Press, Cambridge, UK. ISBN 0-521-35056-5.
- Heredia, C. F., A. Sols, and G. DelaFuente (1968) Specificity of the constitutive hexose transport in yeast. Eur. J. Biochem. 5: 321-329. https://doi.org/10.1111/j.1432-1033.1968.tb00373.x
- Bakker, B. M., C. Bro, P. Kotter, M. A. Luttik, J. P. Dijken, and J. T. Pronk (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737. https://doi.org/10.1128/JB.182.17.4730-4737.2000
- Bakker, B. M., K. M. Overkamp, A. J. Maris, P. Kotter, M. A. Luttik, J. P. Dijken, and J. T. Pronk (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25: 15-37. https://doi.org/10.1111/j.1574-6976.2001.tb00570.x
- Twerdochlib, A. L., F. O. Pedrosa, S. Funayama, and L. U. Rigo (1994) L-rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus. Can. J. Microbiol. 40: 896-902. https://doi.org/10.1139/m94-144
- Koivistoinen, O. M., S. Hilditch, S. P. Voutilainen, H. Boer, M. Penttilä, and P. Richard (2008) Identification in the yeast Pichia stipitis of the first L-rhamnose-1-dehydrogenase gene. FEBS J. 275: 2482-2488. https://doi.org/10.1111/j.1742-4658.2008.06392.x
- Seiya, W., S. Piyanart, and K. Makino (2008) Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. FEBS J. 275: 5139-5149. https://doi.org/10.1111/j.1742-4658.2008.06645.x
- Seiya, W., M. Saimura, and K. Makino (2008) Eukaryotic and Bacterial Gene Clusters Related to an Alternative Pathway of Nonphosphorylated L-Rhamnose Metabolism. J. Biological Chem. 283: 20372-20382. https://doi.org/10.1074/jbc.M801065200
- Michelle, M. C., J. Boonstra, J. Arie, and C. T. Verrips (1996) Kinetic analysis of hexose uptake in Saccharomyces cerevisiae cultivated in continuous culture. Biochimica et Biophysics Acta 1277: 209-216. https://doi.org/10.1016/S0005-2728(96)00098-9
Cited by
- Phylogenetic Diversity and Community Analysis of Marine Bacteria Associated with Ulva pertusa vol.26, pp.7, 2016, https://doi.org/10.5352/JLS.2016.26.7.819
- Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae vol.28, pp.6, 2013, https://doi.org/10.7841/ksbbj.2013.28.6.366