Effect of Lespedeza Cuneata G. Don on the Activity of Murine Immune Cells

야관문이 생쥐의 면역세포 활성에 미치는 영향

  • Received : 2011.08.26
  • Accepted : 2011.10.07
  • Published : 2011.10.25

Abstract

The purpose of this research was to investigate the effects of 50% ethylalcohol extracts of Lespedeza cuneata G. Don (LE) on the activity of murine immune cells. LE was administered orally once a day for 7 days at the dose of 250 mg/kg. LE increased the cell viability of thymocytes, splenocytes and peritoneal macrophages in vitro and in vivo system, but decreased the cell viability of thymocytes and splenocytes in the presence of concanavalin A in vivo system. Also, the administration of LE was increased the production of ${\gamma}$-interferone, but did not affect the production of interleukin-2 and interleukin-4. Furthermore, LE decreased the phagocytic activity of peritoneal macrophages in vitro and in vivo system, but enhanced the production of nitric oxide. These results suggest that LE has a immuno-regulative action via stimulation of immune cells proliferation.

Keywords

References

  1. Shin, M.K., Kim, C.M., An, D.G. and Lee, J.S. Dictionary of oriental medicine, Jungdam Press, Seoul, Korea, pp 2770-2773, 1997.
  2. Atsushi, N. and Kazuko, H. C-Glycoylfalavones in Lespedeza cuneata, Chem. Pharm. Bull., 28: 964-965, 1980. https://doi.org/10.1248/cpb.28.964
  3. Kwon, D.J., Kim, J.K., Ham, Y.H. and Bae, Y.S., Flavone glycosides from the aterial parts of Lespedeza cuneata G. Don, J. Kor. Soc. Appl. Biol. Chem., 50(4):344-347, 2007.
  4. Shin, M., Munckazu, L., Emiko, I., Hiromasa, T. and Kengo, K. Studies on the constituents of the useful plants. VIII. The constituents of Lespedeza cuneata G. Don, Yakugaku Zasshi, 98: 1542-1544, 1978. https://doi.org/10.1248/yakushi1947.98.11_1542
  5. Deng, F., Chang, J., Zhang, J.S., New flavonoids and other constituents from Lespedeza cuneata. J. Asian. Nat. Prod. Res., 9(6-8):655-658, 2007. https://doi.org/10.1080/10286020600979894
  6. 강소신의학원. 중약대사전, 상해, 상해인민출판사, pp 3006- 3006, 1977.
  7. Lee, J.K., Kang, D.G. and Lee, H.S. Vascular relaxation induced by aqueous extract of Lespedeza cuneata via the NO-cGMP pathway. J. Nat. Med., May 24, in press. 2011.
  8. Kim, S.M., Kang, K., Jho, E.H., Jung, Y.J., Nho, C.W., Um, B.H. and Pan, C.H. Hepatoprotective Effect of Flavonoid Glycosides from Lespedeza cuneata against Oxidative Stress Induced by tert-Butyl Hyperoxide. Phytother. Res., Jan. 12. in press, 2011.
  9. Lee, H.J., Lim, G.N., Park, M.A. and Park, S.N., Antibacterial and antioxidative activity of Lespedeza cuneata G. Don extracts. Kor. J. Microbiol. Biotechnol., 39(1):63-69, 2011.
  10. Chung, Y.H. and Lim, C.H. Bioactivity of an extract of Lespedeza cuneata G. Don to rabbit corpus cavernosum smooth muscle tone. J. Agri. Sci., 32(1):63-70, 2005.
  11. Abbas, A.K., Lichtman, A.H. and Pober, J.S. Cellular and Molecular Immunology. 2ed. Saunders, p 5, 1994.
  12. Wysocki, L.J. and Sato, V.L. Planning for lymphocytes: A method for cell selection. Proc. Natl. Acad. Sci. USA. 75: 2844, 1978. https://doi.org/10.1073/pnas.75.6.2844
  13. Mizel, S.B., Openheim, J.J. and Rosensteich, D.L. Characterization of lymphocyte-activating factor(LAF) produced by the macrophage cell line P388D1. J. Immunol. 120: 1497, 1979.
  14. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J. Immunol. methods. 65: 55, 1983. https://doi.org/10.1016/0022-1759(83)90303-4
  15. Kotnic, V. and Fleischmann, W.R.Jr. A simple and rapid method to determine hematopoietic growth factor activity. J. Immunol. methods. 129: 23, 1990. https://doi.org/10.1016/0022-1759(90)90416-S
  16. Eun, J.S., Lee, D.H., Jeon, Y.K., Kwon, Y.A. and Kwon, J. Effect of Kamichungbieum on immune reaction. Kor. J. Oriental Physiology & Pathology, 18(5):1391-1396, 2004.
  17. Boudard, F., Vallot, N., Cabaner, C. and Bastide, M. Chemiluminenscence and nitrite determinations by the MALU macrophage cell line. J. Immunol. Methods, 174: 259, 1994. https://doi.org/10.1016/0022-1759(94)90030-2
  18. Blair, A.L., Cree, I.A., Beck, J.S. and Hating, M.J.G. Measurement of phagocyte chemiluminenscence in a microtiter plate format. J. Immunol. Methods, 112: 163, 1988. https://doi.org/10.1016/0022-1759(88)90352-3
  19. Rockett, K.A., Awburn, M.M., Cowden, W.B. and Clark, I.A. Killing of Plasmodium faciparum in vitro by nitric oxide derivatives. Infec. Immunity, 59(9):3280, 1991.
  20. Miceli, M.C. and Parnes, J.R. The role of CD4 and CD8 in T cell activation and differentiation. Advances in Immunology, 53: 59, 1993.
  21. Charles, A. J., Paul, T., Mark, W. The immune system in health and disease. 4ed, Garland Pub., p 463, 2000.
  22. Channon, J. Y., Leslie, C. C. and Johnston, Jr. R. B. Zymosan-stimulated production of phosphatidic acid by macrophages: relationship to release of superoxide anion and inhibition by agents that increase intracellular cyclic AMP. J. Leucocyte Biol. 41: 450-455, 1987. https://doi.org/10.1002/jlb.41.5.450
  23. Jun, C.D., Park, S.K., Kim, J.M., Kim, J.D. and Kim, S.H. Nitric oxide inhibits macrophage pseudopodia formation in the activated macrophages. Kor. J. Immunol. 18: 635-644, 1996.